Product Description
Industrial Silent/Mute Medical Dry Oil Free Oilless Direct Drive Rotary Double Screw Type Air Compressor Advantages
1.Clean air 100% oil-free, class 0 oil free air according to ISO8537-1
2.Adopt GHH air end made in Germany
3.Technology patent used in oil free compressed air system
4.Significant energy saving, environmental-friendly and pollution-free
5.Low operation and maintenance cost
6.Powerful MAM microcomputer controller and touch screen
7.Designed especially for medical, pharmacy, instrument, coating, chemical industry and food processing, etc.
DENAIR Dry Type Oil Free Screw Air Compressor In Hannover Messe 2017
DENAIR Class 0 Certification
Comparison between dry oil free compressor and lubricated screw air compressor
Dry Type Oil-free Air Compressor Technical Parameters
| Model | Maximum working pressure | Capacity(FAD)* | Installed motor power |
Cooling Method | Noise Level** | Dimensions (mm) |
Weight | Air Outlet Pipe Diameter | |||||||
| 50 Hz | 60 Hz | ||||||||||||||
| bar(e) | psig | m³/min | cfm | m³/min | cfm | kW | hp | dB(A) | L | W | H | kG | |||
| DWW-55 | 7 | 102 | 9.35 | 330 | 8.06 | 285 | 55 | 75 | Air Cooling W-water Cooling | 74 | 2000 | 1200 | 1650 | 1900 | G1-1/2″ |
| 8 | 116 | 9.17 | 324 | 8.04 | 284 | 55 | 75 | 74 | 2000 | 1200 | 1650 | 1900 | G1-1/2″ | ||
| 10 | 145 | 8.11 | 286 | 7.05 | 249 | 55 | 75 | 74 | 2000 | 1200 | 1650 | 1900 | G1-1/2″ | ||
| DWW-55W | 7 | 102 | 9.35 | 330 | 8.06 | 285 | 55 | 75 | 74 | 2000 | 1200 | 1650 | 1800 | G1-1/2″ | |
| 8 | 116 | 9.17 | 324 | 8.04 | 284 | 55 | 75 | 74 | 2000 | 1200 | 1650 | 1800 | G1-1/2″ | ||
| 10 | 145 | 8.11 | 286 | 7.05 | 249 | 55 | 75 | 74 | 2000 | 1200 | 1650 | 1800 | G1-1/2″ | ||
| DWW-75 | 7 | 102 | 12.71 | 449 | 11.56 | 408 | 75 | 100 | 74 | 2000 | 1200 | 1650 | 2100 | DN50 | |
| 8 | 116 | 11.78 | 416 | 11.53 | 407 | 75 | 100 | 74 | 2000 | 1200 | 1650 | 2100 | DN50 | ||
| 10 | 145 | 11.57 | 409 | 10.11 | 357 | 75 | 100 | 74 | 2000 | 1200 | 1650 | 2100 | DN50 | ||
| DWW-75W | 7 | 102 | 12.71 | 449 | 11.56 | 408 | 75 | 100 | 74 | 2000 | 1200 | 1650 | 2000 | DN50 | |
| 8 | 116 | 11.78 | 416 | 11.53 | 407 | 75 | 100 | 74 | 2000 | 1200 | 1650 | 2000 | DN50 | ||
| 10 | 145 | 11.57 | 409 | 10.11 | 357 | 75 | 100 | 74 | 2000 | 1200 | 1650 | 2000 | DN50 | ||
| DWW-90 | 7 | 102 | 14.6 | 515 | 13.61 | 480 | 90 | 120 | 76 | 2800 | 1800 | 1860 | 2800 | DN50 | |
| 8 | 116 | 14.32 | 506 | 13.47 | 476 | 90 | 120 | 76 | 2800 | 1800 | 1860 | 2800 | DN50 | ||
| 10 | 145 | 13.55 | 478 | 12.5 | 441 | 90 | 120 | 76 | 2800 | 1800 | 1860 | 2800 | DN50 | ||
| DWW-90W | 7 | 102 | 14.6 | 515 | 13.61 | 480 | 90 | 120 | 76 | 2800 | 1800 | 1860 | 2180 | DN50 | |
| 8 | 116 | 14.32 | 506 | 13.47 | 476 | 90 | 120 | 76 | 2800 | 1800 | 1860 | 2180 | DN50 | ||
| 10 | 145 | 13.55 | 478 | 12.5 | 441 | 90 | 120 | 76 | 2800 | 1800 | 1860 | 2180 | DN50 | ||
| DWW-110 | 7 | 102 | 20.27 | 716 | N/A*** | N/A*** | 110 | 150 | 78 | 2800 | 1800 | 1860 | 3200 | DN65 | |
| 8 | 116 | 19.03 | 672 | N/A*** | N/A*** | 110 | 150 | 78 | 2800 | 1800 | 1860 | 3200 | DN65 | ||
| 10 | 145 | 16.65 | 588 | 15.57 | 550 | 110 | 150 | 78 | 2800 | 1800 | 1860 | 3200 | DN65 | ||
| DWW-110W | 7 | 102 | 20.27 | 716 | N/A*** | N/A*** | 110 | 150 | 78 | 2800 | 1800 | 1860 | 3050 | DN65 | |
| 8 | 116 | 19.03 | 672 | N/A*** | N/A*** | 110 | 150 | 78 | 2800 | 1800 | 1860 | 3050 | DN65 | ||
| 10 | 145 | 16.65 | 588 | 15.57 | 550 | 110 | 150 | 78 | 2800 | 1800 | 1860 | 3050 | DN65 | ||
| DWW-132 | 7 | 102 | 23.94 | 845 | 20.09 | 709 | 132 | 175 | 78 | 2800 | 1800 | 1860 | 3340 | DN65 | |
| 8 | 116 | 22.47 | 793 | 19.87 | 702 | 132 | 175 | 78 | 2800 | 1800 | 1860 | 3340 | DN65 | ||
| 10 | 145 | 20.19 | 713 | N/A*** | N/A*** | 132 | 175 | 78 | 2800 | 1800 | 1860 | 3340 | DN65 | ||
| DWW-132W | 7 | 102 | 23.94 | 845 | 20.48 | 723 | 132 | 175 | 78 | 2800 | 1800 | 1860 | 3170 | DN65 | |
| 8 | 116 | 22.47 | 793 | 20.26 | 715 | 132 | 175 | 78 | 2800 | 1800 | 1860 | 3170 | DN65 | ||
| 10 | 145 | 20.19 | 713 | 19.82 | 700 | 132 | 175 | 78 | 2800 | 1800 | 1860 | 3170 | DN65 | ||
| DWW-160 | 7 | 102 | 27.26 | 962 | 25.47 | 899 | 160 | 215 | 78 | 2800 | 1800 | 1860 | 3700 | DN65 | |
| 8 | 116 | 25.86 | 913 | 25.17 | 889 | 160 | 215 | 78 | 2800 | 1800 | 1860 | 3700 | DN65 | ||
| 10 | 145 | 23.87 | 843 | 23.18 | 819 | 160 | 215 | 78 | 2800 | 1800 | 1860 | 3700 | DN65 | ||
| DWW-160W | 7 | 102 | 27.26 | 962 | 25.47 | 899 | 160 | 215 | 78 | 2800 | 1800 | 1860 | 3300 | DN65 | |
| 8 | 116 | 25.86 | 913 | 25.17 | 889 | 160 | 215 | 78 | 2800 | 1800 | 1860 | 3300 | DN65 | ||
| 10 | 145 | 23.87 | 843 | 23.8 | 819 | 160 | 215 | 78 | 2800 | 1800 | 1860 | 3300 | DN65 | ||
| DWW-185 | 7 | 102 | 30.19 | 1066 | 28.88 | 1571 | 185 | 250 | 78 | 2800 | 1800 | 1860 | 3900 | DN65 | |
| 8 | 116 | 29.53 | 1043 | 28.3 | 999 | 185 | 250 | 78 | 2800 | 1800 | 1860 | 3900 | DN65 | ||
| 10 | 145 | 27.2 | 960 | 27.17 | 960 | 185 | 250 | 78 | 2800 | 1800 | 1860 | 3900 | DN65 | ||
| DWW-185W | 7 | 102 | 30.19 | 1066 | 28.88 | 1571 | 185 | 250 | 78 | 2800 | 1800 | 1860 | 3460 | DN65 | |
| 8 | 116 | 29.53 | 1043 | 28.3 | 999 | 185 | 250 | 78 | 2800 | 1800 | 1860 | 3460 | DN65 | ||
| 10 | 145 | 27.2 | 960 | 27.17 | 960 | 185 | 250 | 78 | 2800 | 1800 | 1860 | 3460 | DN65 | ||
| DWW-200W | 7 | 102 | 36.41 | 1286 | 31.14 | 1100 | 200 | 270 | 78 | 3100 | 2150 | 2200 | 4300 | DN100 | |
| 8 | 116 | 33.86 | 1196 | 30.52 | 1078 | 200 | 270 | 78 | 3100 | 2150 | 2200 | 4300 | DN100 | ||
| 10 | 145 | 30.35 | 1071 | 28.82 | 1018 | 200 | 270 | 78 | 3100 | 2150 | 2200 | 4300 | DN100 | ||
| DWW-220W | 7 | 102 | 38.99 | 1377 | 37.54 | 1325 | 220 | 300 | 78 | 3100 | 2150 | 2200 | 4500 | DN100 | |
| 8 | 116 | 37.93 | 1339 | 36.78 | 1299 | 220 | 300 | 78 | 3100 | 2150 | 2200 | 4500 | DN100 | ||
| 10 | 145 | 33.79 | 1193 | 31.08 | 1097 | 220 | 300 | 78 | 3100 | 2150 | 2200 | 4500 | DN100 | ||
| DWW-250W | 7 | 102 | 47.26 | 1669 | 41.53 | 1466 | 250 | 350 | 78 | 3100 | 2150 | 2200 | 4550 | DN100 | |
| 8 | 116 | 43.31 | 1529 | 40.69 | 1437 | 250 | 350 | 78 | 3100 | 2150 | 2200 | 4550 | DN100 | ||
| 10 | 145 | 38.88 | 1373 | 37.43 | 1322 | 250 | 350 | 78 | 3100 | 2150 | 2200 | 4550 | DN100 | ||
| DWW-280W | 7 | 102 | 51.04 | 1802 | N/A*** | N/A*** | 280 | 375 | 80 | 3400 | 2400 | 2200 | 4800 | DN100 | |
| 8 | 116 | 47.24 | 1668 | N/A*** | N/A*** | 280 | 375 | 80 | 3400 | 2400 | 2200 | 4800 | DN100 | ||
| 10 | 145 | 43.26 | 1528 | 41.4 | 1462 | 280 | 375 | 80 | 3400 | 2400 | 2200 | 4800 | DN100 | ||
| DWW-315W | 7 | 102 | 52.03 | 1837 | N/A*** | N/A*** | 315 | 425 | 80 | 3400 | 2400 | 2200 | 5000 | DN100 | |
| 8 | 116 | 51.04 | 1802 | N/A*** | N/A*** | 315 | 425 | 80 | 3400 | 2400 | 2200 | 5000 | DN100 | ||
| 10 | 145 | 47.18 | 1666 | N/A*** | N/A*** | 315 | 425 | 80 | 3400 | 2400 | 2200 | 5000 | DN100 | ||
Low Pressure Dry Type Oil-free Air Compressor Technical Parameters
| Model | Maximum working pressure | Capacity(FAD)* | Installed motor power |
Cooling Method | Noise Level** | Dimensions (mm) |
Weight | Air Outlet Pipe Diameter |
|||||||
| 50 Hz | 60 Hz | ||||||||||||||
| bar(e) | psig | m³/min | cfm | m³/min | cfm | kW | hp | dB(A) | L | W | H | kG | |||
| DWL-55-2 | 2.5 | 37 | 15.33 | 541 | 14.4 | 508 | 55 | 75 | Air Cooling W-water Cooling | 69 | 2100 | 1500 | 1790 | 2500 | DN100 |
| DWL-55-3 | 3.5 | 51 | 12.78 | 451 | 10.85 | 383 | 55 | 75 | 69 | 2100 | 1500 | 1790 | 2500 | DN100 | |
| DWL-75-2 | 2.5 | 37 | 19.92 | 703 | 19.85 | 701 | 75 | 100 | 69 | 2100 | 1500 | 1790 | 2650 | DN100 | |
| DWL-75-3 | 3.5 | 51 | 16.3 | 575 | 15.86 | 560 | 75 | 100 | 69 | 2100 | 1500 | 1790 | 2650 | DN100 | |
| DWL-90-2 | 2.5 | 37 | 26.07 | 921 | 26.28 | 928 | 90 | 120 | 72 | 2800 | 1800 | 1860 | 2750 | DN100 | |
| DWL-90-3 | 3.5 | 51 | 19.54 | 690 | 18.3 | 646 | 90 | 120 | 72 | 2100 | 1500 | 1790 | 2750 | DN100 | |
| DWL-110(W)-2 | 2.5 | 37 | 33.16 | 1171 | 29.82 | 1053 | 110 | 150 | 72 | 3100 | 2150 | 2200 | 3500 | DN150 | |
| DWL-110(W)-3 | 3.5 | 51 | 25.6 | 904 | 23.9 | 884 | 110 | 150 | 72 | 2800 | 1800 | 1860 | 3000 | DN150 | |
| DWL-132(W)-2 | 2.5 | 37 | 40.24 | 1421 | 36.99 | 1271 | 132 | 175 | 72 | 3100 | 2150 | 2200 | 3600 | DN150 | |
| DWL-132(W)-3 | 3.5 | 51 | 27.23 | 961 | 29.43 | 1039 | 132 | 175 | 72 | 2800 | 1800 | 1860 | 3100 | DN150 | |
| DWL-160(W)-2 | 2.5 | 37 | 49.42 | 1745 | 45.2 | 1596 | 160 | 215 | 76 | 3100 | 2150 | 2200 | 3900 | DN150 | |
| DWL-160(W)-3 | 3.5 | 51 | 35.75 | 1262 | 35.12 | 1240 | 160 | 215 | 76 | 3100 | 2150 | 2200 | 3800 | DN150 | |
| DWL-185(W)-2 | 2.5 | 37 | 56.02 | 1989 | 52.71 | 1861 | 185 | 250 | 79 | 3400 | 2400 | 2200 | 4100 | DN150 | |
| DWL-185(W)-3 | 3.5 | 51 | 42.21 | 1490 | 40.28 | 1422 | 185 | 250 | 79 | 3400 | 2400 | 2200 | 4000 | DN150 | |
*) FAD in accordance with ISO 1217 : 2009, Annex C: Absolute intake pressure 1 bar (a), cooling and air intake temperature 20 °C
**) Noise level as per ISO 2151 and the basic standard ISO 9614-2, operation at maximum operating pressure and maximum speed; tolerance: ± 3 dB(A)
***) TBD-To Be Discussed
****) W-Water cooling
DENAIR Factory
Why Choose DENAIR ?
1.Original Germany AERZEN/DENAIR air end,larger air delivery,lower noise.
2. Oil free screw air compressor Pass CE, ISO9001 Quality Certification
3. One of 3 biggest air compressor manufacturer in China
4. Complete before-on-after sales service
5. Immediate reply or solution by email or call
6.Special oil gas separator with patents
7.High efficiency motor, up to 96%
FAQ
Q1: Are you factory or trade company?
A1: We are factory.
Q2: What the exactly address of your factory?
A2: Our company is located in No. 6767, Tingfeng Rd. Xihu (West Lake) Dis.n District, ZheJiang 201502, China
And our factory is located in No. 366, YangzhuangBang Street, Pingxing Rd., Xindai Town, HangZhou, ZHangZhoug Province, China
Q3: Warranty terms of your machine?
A3: Two years warranty for the machine and technical support according to your needs.
Q4: Will you provide some spare parts of the machines?
A4: Yes, of course.
Q5: How long will you take to arrange production?
A5: 380V 50HZ we can delivery the goods within 10 days. Other electricity or other color we will delivery within 22 days
Q6: Can you accept OEM orders?
A6: Yes, with professional design team, OEM orders are highly welcome
| Lubrication Style: | Oil-free |
|---|---|
| Cooling System: | Air Cooling and Water Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Customization: |
Available
|
|
|---|
.webp)
Are there special considerations for air compressor installations in remote areas?
Yes, there are several special considerations to take into account when installing air compressors in remote areas. These areas often lack access to infrastructure and services readily available in urban or well-developed regions. Here are some key considerations:
1. Power Source:
Remote areas may have limited or unreliable access to electricity. It is crucial to assess the availability and reliability of the power source for operating the air compressor. In some cases, alternative power sources such as diesel generators or solar panels may need to be considered to ensure a consistent and uninterrupted power supply.
2. Environmental Conditions:
Remote areas can present harsh environmental conditions that can impact the performance and durability of air compressors. Extreme temperatures, high humidity, dust, and corrosive environments may require the selection of air compressors specifically designed to withstand these conditions. Adequate protection, insulation, and ventilation must be considered to prevent damage and ensure optimal operation.
3. Accessibility and Transport:
Transporting air compressors to remote areas may pose logistical challenges. The size, weight, and portability of the equipment should be evaluated to ensure it can be transported efficiently to the installation site. Additionally, the availability of suitable transportation infrastructure, such as roads or air transportation, needs to be considered to facilitate the delivery and installation process.
4. Maintenance and Service:
In remote areas, access to maintenance and service providers may be limited. It is important to consider the availability of trained technicians and spare parts for the specific air compressor model. Adequate planning for routine maintenance, repairs, and troubleshooting should be in place to minimize downtime and ensure the longevity of the equipment.
5. Fuel and Lubricants:
For air compressors that require fuel or lubricants, ensuring a consistent and reliable supply can be challenging in remote areas. It is necessary to assess the availability and accessibility of fuel or lubricant sources and plan for their storage and replenishment. In some cases, alternative or renewable fuel options may need to be considered.
6. Noise and Environmental Impact:
Remote areas are often characterized by their natural beauty and tranquility. Minimizing noise levels and environmental impact should be a consideration when installing air compressors. Selecting models with low noise emissions and implementing appropriate noise reduction measures can help mitigate disturbances to the surrounding environment and wildlife.
7. Communication and Remote Monitoring:
Given the remote location, establishing reliable communication channels and remote monitoring capabilities can be essential for effective operation and maintenance. Remote monitoring systems can provide real-time data on the performance and status of the air compressor, enabling proactive maintenance and troubleshooting.
By addressing these special considerations, air compressor installations in remote areas can be optimized for reliable operation, efficiency, and longevity.
.webp)
What safety precautions should be taken when working with compressed air?
Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:
1. Personal Protective Equipment (PPE):
Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.
2. Compressed Air Storage:
Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.
3. Pressure Regulation:
Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.
4. Air Hose Inspection:
Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.
5. Air Blowguns:
Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.
6. Air Tool Safety:
Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.
7. Air Compressor Maintenance:
Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.
8. Training and Education:
Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.
9. Lockout/Tagout:
When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.
10. Proper Ventilation:
Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.
By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.
.webp)
What is the role of air compressor tanks?
Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:
1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.
2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.
3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.
4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.
5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.
6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.
Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.


editor by CX 2023-10-21
China OEM 100% Oil Free Electric Stationary Screw Oil-Free Air Compressor air compressor repair near me
Product Description
Product Description
Stationary air compressors
1. Screw host: professional customized two-stage compression screw host;High pressure and gas capacity;Low energy consumption and long service life;Low maintenance cost.
2.Left and right sides fully open door design: large operation space;Easy access to service points, time-saving and efficient; Centralized chassis discharge of waste liquid, safe and environmental protection;Chassis reinforcement design, strong and durable.
3.Famous brand diesel engine: exquisite manufacturing process, reliable and durable;More powerful, fuel adaptability;Low speed response and strong dynamic performance;The integrated design has lower failure rate and more convenient maintenance;Excellent reliability, low fuel consumption.
4.Controller: Chinese and English control interface, various parameters and lights are clear and practical;With data diagnosis and alarm indication, safe and reliable;Easy to operate, easy to learn.
Details Images
| Model | L-SPD670D |
|
Engine displacement |
19 m3/min |
| 317 L/s | |
| 671 CFM | |
|
Rated working pressure |
19 Bar |
| 1.9 Mpa | |
| Compressor oil volume | 80 L |
| Fuel tank capacity | 350 L |
| Noise Level | 75 +-/5 dB/A |
| Ambient temperature | 45ºC~-25ºC |
| Engine Model | 6CAT8.3-C260 |
| Rated speed power | 196/260kW/hp |
| Number of cylinders | 6 |
| Maximum engine speed | 2200rpm |
| Minimum engine speed | 1500rpm |
| Lubricating oil system capacity | 21L |
| Coolant system capacity | 50L |
| Overall Length | 3720mm |
| 4870mm | |
| Overall Width | 2140mm |
| Overall Height | 2550mm |
| Machine weight | 4570kg |
| 4710kg | |
| Exhaust valves | 1 – G 1 1/2″ 1 – G 2″ |
Company Profile
HangZhou CHINAMFG Drilling Equipment Co., Ltd. mainly provides holistic drilling solutions, serving the mining, stone crushing, water conservancy drilling industry, to help you solve the problem of drilling at high efficiency and low cost. We mainly provide mobile air compressors, drilling rigs, hammer, drill bit, crushers, underground water detector.We are your trustworthy partner.
FAQ
1.Is it difficult to operate and make the graph?
The instrument is easy to operate and we will send you the detailed operation manual via email.
The detector directly mapping with 1 button, no need computer drawing mapping.
2.What is the accuracy?
Our natural electric field instruments have been made for more than 10 years, with advanced technology and market test. We have obtained many invention patents. Our customer feedback rate reaches 100%. Accuracy over 95%.
3.How about after-sales service?
2 year warranty.Free data service for life.The professional geologist give the suggestions and 24hours online.
| Lubrication Style: | Oil-free |
|---|---|
| Cooling System: | Water Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Angular |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Customization: |
Available
|
|
|---|
.webp)
What are the differences between stationary and portable air compressors?
Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:
1. Mobility:
The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.
2. Power Source:
Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.
3. Tank Capacity:
Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.
4. Performance and Output:
The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.
5. Noise Level:
Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.
6. Price and Cost:
Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.
When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.
.webp)
Can air compressors be integrated into automated systems?
Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:
Pneumatic Automation:
Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.
Control and Regulation:
In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.
Sequential Operations:
Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.
Energy Efficiency:
Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.
Monitoring and Diagnostics:
Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.
When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.
In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.
.webp)
What are the different types of air compressors?
There are several different types of air compressors, each with its own unique design and operating principle. Here’s an overview of the most commonly used types:
1. Reciprocating Air Compressors: Reciprocating air compressors, also known as piston compressors, use one or more pistons driven by a crankshaft to compress air. They operate by drawing air into a cylinder, compressing it with the piston’s up-and-down motion, and discharging the compressed air into a storage tank. Reciprocating compressors are known for their high pressure capabilities and are commonly used in industrial applications.
2. Rotary Screw Air Compressors: Rotary screw air compressors utilize two interlocking screws to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads. These compressors are known for their continuous duty cycle, high efficiency, and quiet operation. They are widely used in industrial, commercial, and automotive applications.
3. Centrifugal Air Compressors: Centrifugal air compressors rely on the principle of centrifugal force to compress air. They use a high-speed impeller to accelerate the incoming air and then convert the kinetic energy into pressure energy. Centrifugal compressors are commonly used in large-scale industrial applications that require high volumes of compressed air.
4. Rotary Vane Air Compressors: Rotary vane air compressors employ a rotor with sliding vanes that compress the air. As the rotor rotates, the vanes slide in and out of the rotor, creating compression chambers. Air is drawn in, trapped, and compressed as the vanes move. These compressors are compact, reliable, and suitable for small to medium-sized applications.
5. Axial Flow Air Compressors: Axial flow air compressors are primarily used in specialized applications such as aircraft engines and gas turbines. They utilize a series of rotating and stationary blades to compress air in a continuous flow. Axial flow compressors are known for their high flow rates and are designed for applications that require large volumes of compressed air.
6. Scroll Air Compressors: Scroll air compressors consist of two interlocking spirals or scrolls that compress the air. One spiral remains stationary while the other orbits around it, creating a series of expanding and contracting pockets that compress the air. Scroll compressors are compact, reliable, and commonly used in applications where low noise and oil-free air are required, such as medical and dental equipment.
These are just a few examples of the different types of air compressors available. Each type has its own advantages, capabilities, and ideal applications. The choice of air compressor depends on factors such as required pressure, flow rate, duty cycle, noise level, oil-free operation, and specific application requirements.


editor by CX 2023-10-18