Tag Archives: oil compressor

China Professional Famous Brand High Pressure Screw Air Compressor air compressor oil

Product Description

Features
1. No seal design, the host never leak
Our unique patented technology, the host does not have mechanical seals nor a rubber seal, the complete elimination of leakage sealing produced a host so that the host never leak.
2. The power consumption province, the same power than conventional gas production more than 15% larger compresso
Our air compressor can provide you with saving more than 15 percent, to CMN37G air compressor 24 hours a day, 350 days per year according to the calculation, electricity savings for your company to 46,620 degrees, one degree by one dollar per year for you save electricity 46,620 yuan.
3. Low oil content, very little oil content of compressed air
Our outstanding technical superiority, the volumetric efficiency of up to 95% lower fuel injection quantity can be used to achieve the sealing effect, coupled with the unique design of the gas separation barrel, oil core processing burden is very light, very small amount of oil the air,
sub-core long-life oil.
The high-temperature, continuous operation
Since the volumetric efficiency of our company hosts up to 95%, meaning that only 5% of the gas leak, so the loss is small, that is, the amount of heat the unit rarely run under ambient temperature around 80 ºC.
5. Simple design structure
Secondary host a series of simple structure, less power loss and high efficiency. The whole volume occupied by small, easy to install, simple maintenance.
6. Our company master the core technology
Exhaust pressure from 0.4MPa — 4.0MPa, displacement from: 1 cubic — 42 cubic meters. High pressure air compressor screw air compressor known as the Pearl of the field, our company is the only one capable of producing more pressure 4.0MPa pressure screw air compressor manufacturer, is currently successfully developed two-stage compression screw compressor pressure up to 100 kg, filling gaps in worldwide high-pressure single-screw compressor.

 HIgh pressure 2 stage screw air compressor technical data

Modle

Maximum work pressure FAD Air supply temperature Power Noise Oil content
(supply air)
Weight Cooling fan power Compressed Air Outlet Diameter Dimension
L×W×H
Mpa m3/min ºC kW HP dB(A) PPM Kg kW   mm
TP15G 3.0 1.45 ≤+25ºC
≤ambient temperature +25ºC
15 20 63 ≤2 848 0.635 3/4″ 1600×1150×1315
4.0 1.12
TP18G 3.0 1.73 18.5 25 65 868
4.0 1.38
TP22G 3.0 2.35 22 30 65 900
4.0 1.65
TP30G 3.0 2.93 30 40 66 1217 2.0 3/4″ 1900×1420×1460
4.0 2.28
TP37G 3.0 3.65 37 50 67 1232
4.0 2.83
TP45G 3.0 4.7 45 60 68 1286
4.0 3.57
TP55G 3.0 6.0 55 75 70 2000 1″ 2050×1460×1500
4.0 4.5
TP75G 3.0 7.9 75 100 73 3820 4.3 1″ 2250×1600×1800
4.0 6.5
TP90G 3.0 10.0 90 125 73 3900
4.0 7.84
TP110G 3.0 12.2 110 150 78 3920
4.0 9.7
TP132G 3.0 14.2 132 175 78 4080 7.0 1 1/2″ 2400×1700×1550
4.0 11.68
TP160G 3.0 17.3 160 215 78 6450 2660×1800×1800
4.0 14.2
CM185G 3.0 19.6 185 250 78 6520
4.0 16.6
TP200G 3.0 22.8 200 270 78 6560
4.0 17.9
TP250G 3.0 28.2 250 340 78 7200 11.0 2″ 2900×1800×2000
4.0 22.8
 

/* October 22, 2571 15:47:17 */(()=>{function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

air compressor

Can air compressors be used for gas compression and storage?

Yes, air compressors can be used for gas compression and storage. While air compressors are commonly used to compress and store air, they can also be utilized for compressing and storing other gases, depending on the specific application requirements. Here’s how air compressors can be used for gas compression and storage:

Gas Compression:

Air compressors can compress various gases by utilizing the same principles applied to compressing air. The compressor takes in the gas at a certain pressure, and through the compression process, it increases the pressure and reduces the volume of the gas. This compressed gas can then be used for different purposes, such as in industrial processes, gas pipelines, or storage systems.

Gas Storage:

Air compressors can also be used for gas storage by compressing the gas into storage vessels or tanks. The compressed gas is stored at high pressure within these vessels until it is needed for use. Gas storage is commonly employed in industries where a continuous and reliable supply of gas is required, such as in natural gas storage facilities or for storing compressed natural gas (CNG) used as a fuel for vehicles.

Gas Types:

While air compressors are primarily designed for compressing air, they can be adapted to handle various gases, including but not limited to:

  • Nitrogen
  • Oxygen
  • Hydrogen
  • Carbon dioxide
  • Natural gas
  • Refrigerant gases

It’s important to note that when using air compressors for gas compression and storage, certain considerations must be taken into account. These include compatibility of the compressor materials with the specific gas being compressed, ensuring proper sealing to prevent gas leaks, and adhering to safety regulations and guidelines for handling and storing compressed gases.

By leveraging the capabilities of air compressors, it is possible to compress and store gases efficiently, providing a reliable supply for various industrial, commercial, and residential applications.

air compressor

Are there differences between single-stage and two-stage air compressors?

Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:

Compression Stages:

The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.

Compression Process:

In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.

Pressure Output:

The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.

Efficiency:

Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.

Intercooling:

Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.

Applications:

The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.

It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.

In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.

air compressor

What is the role of air compressor tanks?

Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:

1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.

2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.

3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.

4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.

5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.

6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.

Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.

air compressorsair compressors
editor by lmc 2025-02-24

China manufacturer 2HP 24L Hotdog Tank, Portable Air Compressor, Oil Free Silent Air Compressor, Oil Less air compressor for sale

Product Description

Basic Info.:

Model NO. TAT-2571B Type Piston
Performance Silent Drive Mode Electric
Power Source AC Power Configuration Portable
Application Low Back Pressure Type Piston Type Closed
Material Aluminum and Steel Mute Mute
Transport Package Carton Specification SGS, UL, CE, ISO
Trademark AXIHU (WEST LAKE) DIS. Origin HangZhou, China
HS Code 84148 0571 0 Production Capacity 2000PCS/Month

Product Description:

Spec.

Parameters
Model TAT-2571B Power 1390W
Noise(db) 67 Max Pressure 8.8BAR
Rovolution 2800RPM Tank 24L
Max delivery 202L/Min N.W. (KG) 22
Packing (mm) 565*285*585 G.W. (KG) 24

 

Product Featured:

1.Integrated controller 
2.bigger rubber wheel for easy traveling 
3.more air delivery
4.4pole industrial motor with 2Xlonger life time
5.oilless silent pump
6.semi-Proffesional class 7.more air delivery

Product view:

Company overview; Our exhibition;

Our Advantages

FAQ

Q1: Are you the manufacturer or trading company?
A1: We are the manufacturer.

Q2: Where is your factory?
A2: It is very close to ZheJiang , located in HangZhou City, ZheJiang  Province, China.

Q3: What’s the terms of trade?
A3: FOB,CFR and CIF are all acceptable.

Q4: What’s the terms of payment?
A4: T/T, L/C or cash.

Q5: How long is your delivery time?
A5: Generally it is 30-50 days if the goods are not in stock, it is according to quantity.

Q6: What is the advantage about your company?
A6: Our company has professional team and professional production line.

Q7: If we travel to China to checking your facility, are you welcome?
A7: Of course, why not? We will provide the whole accompany from you landing in China. Only Give us a call before your arrive. We will pick up you from the airport. Warm Welcome!

Q8: How Many Years of your company working in this industry?
A8: We have 12-year experience in this field.
 

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year Limited Warranty
Warranty: 1 Year Limited Warranty
Lubrication Style: Oil-free
Cooling System: Air Cooling
Cylinder Position: Vertical
Structure Type: Closed Type
Samples:
US$ 500/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What are the energy-saving technologies available for air compressors?

There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:

1. Variable Speed Drive (VSD) Compressors:

VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.

2. Energy-Efficient Motors:

The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.

3. Heat Recovery Systems:

Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.

4. Air Receiver Tanks:

Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.

5. System Control and Automation:

Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.

6. Leak Detection and Repair:

Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.

7. System Optimization and Maintenance:

Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.

By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.

air compressor

How do you choose the right air compressor for woodworking?

Choosing the right air compressor for woodworking is essential to ensure efficient and effective operation of pneumatic tools and equipment. Here are some factors to consider when selecting an air compressor for woodworking:

1. Required Air Volume (CFM):

Determine the required air volume or cubic feet per minute (CFM) for your woodworking tools and equipment. Different tools have varying CFM requirements, so it is crucial to choose an air compressor that can deliver the required CFM to power your tools effectively. Make sure to consider the highest CFM requirement among the tools you’ll be using simultaneously.

2. Tank Size:

Consider the tank size of the air compressor. A larger tank allows for more stored air, which can be beneficial when using tools that require short bursts of high air volume. It helps maintain a consistent air supply and reduces the frequency of the compressor cycling on and off. However, if you have tools with continuous high CFM demands, a larger tank may not be as critical.

3. Maximum Pressure (PSI):

Check the maximum pressure (PSI) rating of the air compressor. Woodworking tools typically operate within a specific PSI range, so ensure that the compressor can provide the required pressure. It is advisable to choose an air compressor with a higher maximum PSI rating to accommodate any future tool upgrades or changes in your woodworking needs.

4. Noise Level:

Consider the noise level of the air compressor, especially if you’ll be using it in a residential or shared workspace. Some air compressors have noise-reducing features or are designed to operate quietly, making them more suitable for woodworking environments where noise control is important.

5. Portability:

Assess the portability requirements of your woodworking projects. If you need to move the air compressor frequently or work in different locations, a portable and lightweight compressor may be preferable. However, if the compressor will remain stationary in a workshop, a larger, stationary model might be more suitable.

6. Power Source:

Determine the power source available in your woodworking workspace. Air compressors can be powered by electricity or gasoline engines. If electricity is readily available, an electric compressor may be more convenient and cost-effective. Gasoline-powered compressors offer greater flexibility for remote or outdoor woodworking projects where electricity may not be accessible.

7. Quality and Reliability:

Choose an air compressor from a reputable manufacturer known for producing reliable and high-quality equipment. Read customer reviews and consider the warranty and after-sales support offered by the manufacturer to ensure long-term satisfaction and reliability.

8. Budget:

Consider your budget and balance it with the features and specifications required for your woodworking needs. While it’s important to invest in a reliable and suitable air compressor, there are options available at various price points to accommodate different budgets.

By considering these factors and evaluating your specific woodworking requirements, you can choose an air compressor that meets the demands of your tools, provides efficient performance, and enhances your woodworking experience.

air compressor

How do oil-lubricated and oil-free air compressors differ?

Oil-lubricated and oil-free air compressors differ in terms of their lubrication systems and the presence of oil in their operation. Here are the key differences:

Oil-Lubricated Air Compressors:

1. Lubrication: Oil-lubricated air compressors use oil for lubricating the moving parts, such as pistons, cylinders, and bearings. The oil forms a protective film that reduces friction and wear, enhancing the compressor’s efficiency and lifespan.

2. Performance: Oil-lubricated compressors are known for their smooth and quiet operation. The oil lubrication helps reduce noise levels and vibration, resulting in a more comfortable working environment.

3. Maintenance: These compressors require regular oil changes and maintenance to ensure the proper functioning of the lubrication system. The oil filter may need replacement, and the oil level should be regularly checked and topped up.

4. Applications: Oil-lubricated compressors are commonly used in applications that demand high air quality and continuous operation, such as industrial settings, workshops, and manufacturing facilities.

Oil-Free Air Compressors:

1. Lubrication: Oil-free air compressors do not use oil for lubrication. Instead, they utilize alternative materials, such as specialized coatings, self-lubricating materials, or water-based lubricants, to reduce friction and wear.

2. Performance: Oil-free compressors generally have a higher airflow capacity, making them suitable for applications where a large volume of compressed air is required. However, they may produce slightly more noise and vibration compared to oil-lubricated compressors.

3. Maintenance: Oil-free compressors typically require less maintenance compared to oil-lubricated ones. They do not need regular oil changes or oil filter replacements. However, it is still important to perform routine maintenance tasks such as air filter cleaning or replacement.

4. Applications: Oil-free compressors are commonly used in applications where air quality is crucial, such as medical and dental facilities, laboratories, electronics manufacturing, and painting applications. They are also favored for portable and consumer-grade compressors.

When selecting between oil-lubricated and oil-free air compressors, consider the specific requirements of your application, including air quality, noise levels, maintenance needs, and expected usage. It’s important to follow the manufacturer’s recommendations for maintenance and lubrication to ensure the optimal performance and longevity of the air compressor.

China manufacturer 2HP 24L Hotdog Tank, Portable Air Compressor, Oil Free Silent Air Compressor, Oil Less   air compressor for saleChina manufacturer 2HP 24L Hotdog Tank, Portable Air Compressor, Oil Free Silent Air Compressor, Oil Less   air compressor for sale
editor by CX 2024-02-25

China OEM Hg400m-13 400cfm 13bar Portable Diesel Screw Air Compressor for Mining air compressor oil

Product Description

400cfm 13bar Cummind Engine&Save oil Mining Screw Mobile Diese Air Compressor 

Portable Screw Diesel Air Compressor widely applied to hydropower, railway, ship repairing, mining,
highway, spray, oil and gas field, water well drilling rig, municipal construction, etc.

Details Feature For HG400M-13 Mining Screw Mobile Diese Air Compressor :

1. Most advanced air end:GHH from German technology.

2. Authorative of the engine.

3. Wide open gull-wing door:

4. MANN Brand Air filter,oil filter,air-oil separator,three stage air filter ensure the air clean.

5. Electricity and pannel instrument system:

6.  Solid undercarriage

7.  High efficient & economic adjustment system.

8. Compact structure design,anti-corrosion,and light-weight.

Specification for HG400M-13 Mining Screw Mobile Diese Air Compressor 

Model No HG400M-13
Compressor
Style Double screw, single stage compression, Portable
Air Delivery(m³/min) 10
Rated Working pressure (Bar) 13
Range of Working pressure(Bar) 5-13
Lube Capacity(L) 60
Interface Dimension,Quantity R1.1/2″ x 1,R1″x1
Tire Specifications 6.5-16×2
Tire Pressure(Kpa) 50-600
Elevation Work Max.(m) 3000
L×W×H(mm) 3220×1850×1850
Weight 2450
Noise dB(A) 80-85
Diesel Engine
Model  6BT5.9 or YC6108ZG
Style  Cooled stroke 4 direct injection super charge
Rated Power(Kw/Hp)  110/150
Rated Speed(rpm)  2500 or 2400
Coolant Volume(L)  25-28
Engine Oil Capacity(L)  12-18
Fuel Tank Capacity(L)  120-160
80% Load oil wear (L/h)  17-18

HG400M-13Mining Screw Mobile Diese Air Compressor :

 

Supporting The Drilling Rig For HG400M-13 Screw Air Compressor :
Diesel Air Compressor Used For JBP100B Drilling Rig Photo Show :

Rock rigidity  F=6-20
Diameter of hole   Φ80-105mm
Optium drilling depth 30m
Max high horizontal hole 2.8m
Max low horizontal hole 2.2m
Walk speed 2.5km/h
Gradeability 30°
Rotary speed 0-90rpm/min
Rotation torque                 2300N.m
Lift power 15 KN
Feed way oil cylinder-chain
Feed distance                  2000mm
Carriage Compensation 900mm
Working pressure 5-14bar
Air consumption 7-12m3/min
Ground clearance  284mm
Sliding carriage pitch angle 0-97°
Sliding carriage swing angle Left17°,righ32,total 49°
Power 33kw
Dimension 4100x2030x2571mm
Weight 3400kg

Used For JBP100B Portable Pneumatic Mining Drilling Rig  :


                   

    JEAO MAC. GLAD TO SERVICE FOR YOU . /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Lubrication Style: Oil-less
Cooling System: Air Cooling
Power Source: Diesel Engine

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

What are the differences between stationary and portable air compressors?

Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:

1. Mobility:

The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.

2. Power Source:

Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.

3. Tank Capacity:

Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.

4. Performance and Output:

The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.

5. Noise Level:

Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.

6. Price and Cost:

Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.

When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.

air compressor

How does the horsepower of an air compressor affect its capabilities?

The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:

Power Output:

The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.

Air Pressure:

The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.

Air Volume:

In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.

Duty Cycle:

The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.

Size and Portability:

It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.

When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.

Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.

air compressor

What is the purpose of an air compressor?

An air compressor serves the purpose of converting power, typically from an electric motor or an engine, into potential energy stored in compressed air. It achieves this by compressing and pressurizing air, which can then be used for various applications. Here’s a detailed explanation of the purpose of an air compressor:

1. Powering Pneumatic Tools: One of the primary uses of an air compressor is to power pneumatic tools. Compressed air can be used to operate a wide range of tools, such as impact wrenches, nail guns, paint sprayers, sanders, and drills. The compressed air provides the necessary force and energy to drive these tools, making them efficient and versatile.

2. Supplying Clean and Dry Air: Air compressors are often used to supply clean and dry compressed air for various industrial processes. Many manufacturing and production operations require a reliable source of compressed air that is free from moisture, oil, and other contaminants. Air compressors equipped with appropriate filters and dryers can deliver high-quality compressed air for applications such as instrumentation, control systems, and pneumatic machinery.

3. Inflating Tires and Sports Equipment: Air compressors are commonly used for inflating tires, whether it’s for vehicles, bicycles, or sports equipment. They provide a convenient and efficient method for quickly filling tires with the required pressure. Air compressors are also used for inflating sports balls, inflatable toys, and other similar items.

4. Operating HVAC Systems: Air compressors play a crucial role in the operation of heating, ventilation, and air conditioning (HVAC) systems. They provide compressed air for controlling and actuating dampers, valves, and actuators in HVAC systems, enabling precise regulation of air flow and temperature.

5. Assisting in Industrial Processes: Compressed air is utilized in various industrial processes. It can be used for air blow-off applications, cleaning and drying parts, powering air-operated machinery, and controlling pneumatic systems. Air compressors provide a reliable and efficient source of compressed air that can be tailored to meet the specific requirements of different industrial applications.

6. Supporting Scuba Diving and Breathing Systems: In scuba diving and other breathing systems, air compressors are responsible for filling diving tanks and supplying breathable air to divers. These compressors are designed to meet strict safety standards and deliver compressed air that is free from contaminants.

Overall, the purpose of an air compressor is to provide a versatile source of compressed air for powering tools, supplying clean air for various applications, inflating tires and sports equipment, supporting industrial processes, and facilitating breathing systems in specific contexts.

China OEM Hg400m-13 400cfm 13bar Portable Diesel Screw Air Compressor for Mining   air compressor oilChina OEM Hg400m-13 400cfm 13bar Portable Diesel Screw Air Compressor for Mining   air compressor oil
editor by CX 2024-02-24

China Good quality Suspension Pumps Permanent Magnetic Motor Air Compressor X092-12V X095-12V Yf6273r-2 air compressor oil

Product Description

Any questions, welcome to contact us, we usually reply within 1 hour

Contact information as this: 

WeCha-T: paul906162793

Q Q:906162793

The following is my Wechat scan code, please scan it with your Wechat on cellphone

suspension pumps permanent magnetic motor air compressor X092-12V X095-12V YF6273R-2

air suspension solenoid valve VX4

 

Includes:

·                  (1) VX4 Corner Solenoid Valve Unit.

·                  (2) ft Plug-n-Play Weatherproof Harness (for use with e-level controller). Splice for use with any other controller or switches.

·                  (3) Illustrated Manual.

Features:

·                  For use with e-Level Controller or any other brand of controller or switches.

·                  Pre-wired & port numbered for reduced installation time.

·                  High pressure rated for operation up to 200 PSI.

·                  Dual inlet & exhaust ports for maximum flow.

·                  Compact layout for minimal space usage (5″ x 3″ x 3″).

·                  Anodized aluminum manifold to prevent corrosion.

·                  100% weather resistant for harsh under vehicle environments.

Tech Specs:

·                  Compatible Suspension Type

·                  Voltage Requirements: 9.5 – 16 volts(Common DC12V)

·                  Current Requirements: 1.1 amps

·                  Connectors: IP67 certified

·                  No. of Inlets Ports: 2

·                  No. of Exhaust Ports: 2

·                  Max Operating Pressure: 200 PSI

·                  Cv Flow Factor: .25

·                  Average Adjustment Time: ~2.2 seconds

Any questions, welcome to contact us, we usually reply within 1 hour

Contact information as this: 

WeCha-T: paul906162793

Q Q:906162793

The following is my Wechat scan code, please scan it with your Wechat on cellphone:

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Usually Reply Within 1 Hour
Warranty: 2 Years
Material: Brass
Certification: ISO/TS16949, ISO9001
Car Make: Volkswagen, WuLing, Benz, BMW, Hyundai, Honda, Toyota, Jeep, Nissan, Ford, Chery, Chevrolet, Cadillac, Geely, Roewe, Audi, Peugeot, Lexus, Volvo, Mazda
Position: Both Front and Rear
Samples:
US$ 44.99/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

How are air compressors employed in the petrochemical industry?

Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:

1. Instrumentation and Control Systems:

Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.

2. Pneumatic Tools and Equipment:

Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.

3. Process Air and Gas Supply:

Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.

4. Cooling and Ventilation:

Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.

5. Nitrogen Generation:

Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.

6. Instrument Air:

Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.

By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.

air compressor

How do you maintain proper air quality in compressed air systems?

Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:

1. Air Filtration:

Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.

2. Moisture Control:

Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.

3. Oil Removal:

If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.

4. Regular Maintenance:

Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.

5. Air Receiver Tank Maintenance:

Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.

6. Air Quality Testing:

Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.

7. Education and Training:

Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.

8. Documentation and Record-Keeping:

Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.

By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.

air compressor

Can you explain the basics of air compressor terminology?

Understanding the basic terminology related to air compressors can help in better comprehension of their operation and discussions related to them. Here are some essential terms related to air compressors:

1. CFM (Cubic Feet per Minute): CFM is a unit of measurement that denotes the volumetric flow rate of compressed air. It indicates the amount of air a compressor can deliver within a minute and is a crucial factor in determining the compressor’s capacity.

2. PSI (Pounds per Square Inch): PSI is a unit of measurement used to quantify pressure. It represents the force exerted by the compressed air on a specific area. PSI is a vital specification for understanding the pressure capabilities of an air compressor and determining its suitability for various applications.

3. Duty Cycle: Duty cycle refers to the percentage of time an air compressor can operate in a given time period. It indicates the compressor’s ability to handle continuous operation without overheating or experiencing performance issues. For instance, a compressor with a 50% duty cycle can run for half the time in a given hour or cycle.

4. Horsepower (HP): Horsepower is a unit used to measure the power output of a compressor motor. It indicates the motor’s capacity to drive the compressor pump and is often used as a reference for comparing different compressor models.

5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air delivered by the compressor. It helps in stabilizing pressure fluctuations, allowing for a more consistent supply of compressed air during peak demand periods.

6. Single-Stage vs. Two-Stage: These terms refer to the number of compression stages in a reciprocating air compressor. In a single-stage compressor, air is compressed in a single stroke of the piston, while in a two-stage compressor, it undergoes initial compression in one stage and further compression in a second stage, resulting in higher pressures.

7. Oil-Free vs. Oil-Lubricated: These terms describe the lubrication method used in air compressors. Oil-free compressors have internal components that do not require oil lubrication, making them suitable for applications where oil contamination is a concern. Oil-lubricated compressors use oil for lubrication, enhancing durability and performance but requiring regular oil changes and maintenance.

8. Pressure Switch: A pressure switch is an electrical component that automatically starts and stops the compressor motor based on the pre-set pressure levels. It helps maintain the desired pressure range in the receiver tank and protects the compressor from over-pressurization.

9. Regulator: A regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications and ensures a consistent and safe supply of compressed air.

These are some of the fundamental terms associated with air compressors. Familiarizing yourself with these terms will aid in understanding and effectively communicating about air compressors and their functionality.

China Good quality Suspension Pumps Permanent Magnetic Motor Air Compressor X092-12V X095-12V Yf6273r-2   air compressor oilChina Good quality Suspension Pumps Permanent Magnetic Motor Air Compressor X092-12V X095-12V Yf6273r-2   air compressor oil
editor by CX 2024-02-22

China supplier CHINAMFG 24L Medical Dental Oil Free Compresor Air Compressor air compressor repair near me

Product Description

          SINCE 1988
ZHangZhouG CHINAMFG PUMP INDUSTRY CO.,LTD.

Product Description


Xinya 24L CE Direct Driven Oil-free Air Compressor

Equipped with pressure regulator, pressure gauge, quick connect air outlet, safety valve, on/off switch.
Fully automatic control system aims at operation convenience, safety and reliability.
CE, ROHS, ISO9001 certificated.

 Model Tank(L) Exhaust volume (L/min) Stroke(mm) Power(w) Voltage(V) Speed(r.p.i) Pressure(bar) G.W. Measurement
XY-2624 24 105 14 800 110/220 1380 8 25 56*23*53
XY-2824 24 179 12 900 110/220 2650 8 25 56*23*53
XY-3824 24 237 14 1350 110/220 2650 8 25 56*23*53
XY-5824 24 270 16 1600 110/220 2650 8 25 56*23*53

Electric direct driven oil-free air compressors
1.Motor-direct driven oil-free
2.Motor with thermal protection system
3.Maintenance-free & permanent lubrication system
4.Aluminum cylinder head and crankcase for better heat dissipation   
5.Easy-open drain valve   
6.Regulator with gauge to show pressure
7.Quick connector is available      
8.Plastic coating tank

Detailed Photos

 

Application

Packaging & Shipping

For Model: XY-2624
Natural carton packing with foam protector
1PCS/CTN
Including:air filter,breather,wheel,bolt,foot pad
Carton size:56*23*53cm
840pcs/40HQ

Similar products

 

Company Profile

Excellent Manufacturer
Established in 1988,ZHangZhoug CHINAMFG Pump Industry Co.,Ltd.Has been dedicated to the technology research,production-manufacturing,and marketing of air compressors,water pump and solar pumps.

We are ZHangZhoug key private enterprise and pioneering backbone enterprise. We have the most advanced technology in both production and management. We have a very powerful Research& Development team. We carry on strict monitoring and control to products by many kinds of advanced apparatus with third-party qualified laboratory.Welcome to inquiry!

Certifications

Exhibitions

FAQ

Q: Are you manufacturer or trading factory?
A: We are factory, located in HangZhou pump industry zone.

Q: What is your MOQ?
A:

Product ready good Customized goods
Vibration pump 1pc/model 1000pcs/model
Solar pump 1pc/model 50pcs/model
Direct-driven air compressor 1pc/model 100pcs/model
Belt-driven air compressor 1pc/model mixed model for 1*40HQ

Q: May OEM?
A: OK, pls provide your logo design files when PI is comfirmed.

Q: May I buy 1pc sample first? And How long?
A: Of course, we support sampling order, especially for new customers.
     Ready goods, within 3 working days; Customized goods, 15-45 days.

Q: What is your Payment terms?
A: Sample: 100% payment in advance
    Official order: 30% deposit TT and 70% balance against BL copy

Q: What about the warranty?
A: one-year quality guarantee policy. Money refunded if any quality issues come up.

Q: Where is the landing port?
A: HangZhou port, China. 
     If ZheJiang or other port, pls inform us in advance.

Q: May I visit your factory? Where?
A: Welcome to ZHangZhoug CHINAMFG Pump Industry Co.,ltd
     Address: DaXi Pump Industrial Zone, DaXi Town, WenLing City, ZheJiang Province, China.
     Nearest railway station: 1. HangZhou station, 2. HangZhou station, 3. HangZhou station;
     Nearest air port: 1. HangZhou airport, 2. HangZhou airport

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online After Service
Warranty: 1 Year
Lubrication Style: Oil-free
Cooling System: Air Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Vertical
Samples:
US$ 150/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

How does variable speed drive technology improve air compressor efficiency?

Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:

1. Matching Air Demand:

Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.

2. Reduced Unloaded Running Time:

Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.

3. Soft Starting:

Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.

4. Energy Savings at Partial Load:

In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.

5. Elimination of On/Off Cycling:

Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.

6. Enhanced System Control:

VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.

By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.

air compressor

What safety precautions should be taken when working with compressed air?

Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:

1. Personal Protective Equipment (PPE):

Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.

2. Compressed Air Storage:

Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.

3. Pressure Regulation:

Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.

4. Air Hose Inspection:

Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.

5. Air Blowguns:

Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.

6. Air Tool Safety:

Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.

7. Air Compressor Maintenance:

Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.

8. Training and Education:

Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.

9. Lockout/Tagout:

When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.

10. Proper Ventilation:

Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.

By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.

air compressor

What are the safety considerations when operating an air compressor?

Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:

1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.

2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.

3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.

4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.

5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.

6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.

7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.

8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.

9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.

10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.

By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.

China supplier CHINAMFG 24L Medical Dental Oil Free Compresor Air Compressor   air compressor repair near meChina supplier CHINAMFG 24L Medical Dental Oil Free Compresor Air Compressor   air compressor repair near me
editor by CX 2024-02-21

China wholesaler Hot Sale Reciprocating Double Piston Oil Free Compresseur Screw Air Compressor air compressor CHINAMFG freight

Product Description

40 HP Manufacturer Direct 30 KW Compressor PM VSD Variable Frequency Rotary Type 30KW Screw Air Compressor

 

CHINAMFG Compressor Show

Product Parameters

 

Company Profile

HangZhou CHINAMFG Machinery Co., Ltd (hereinafter referred to as Lingyu), founded in 2009, is a modern new national high-tech enterprise integrating R & D, manufacturing, sales and service. Compressed air purification equipment and air compressor as the core product, the company has formed 5 series of products and systematic solutions for different industries, scales and applications, such as petroleum, chemical industry, electric power, food, health care, biopharmaceutical, manufacturing and processing, textile industry, and is the most influential complete set of compressed air purification solution service provider in China.

 

With an excellent management team and a senior technical R & D team composed of refrigeration technology experts, CHINAMFG have tacit cooperation in product design, R & D and promotion, deeply understand the meaning of ” Supported by technology, driven by value “, “Quality and service” run through every detail of the company’s operation and management, and won the trust and support of customers widely. The growing process of HangZhou CHINAMFG is the process of serving customers and growing up with customers. We try our best to do everything well and meet every challenge with confidence.

 

Certifications

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Video Support
Warranty: 1 Year Warranty
Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Structure Type: Closed Type
Samples:
US$ 4999/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What are the energy-saving technologies available for air compressors?

There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:

1. Variable Speed Drive (VSD) Compressors:

VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.

2. Energy-Efficient Motors:

The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.

3. Heat Recovery Systems:

Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.

4. Air Receiver Tanks:

Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.

5. System Control and Automation:

Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.

6. Leak Detection and Repair:

Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.

7. System Optimization and Maintenance:

Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.

By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.

air compressor

What is the role of air compressors in manufacturing and industrial processes?

Air compressors play a crucial role in various manufacturing and industrial processes, providing a reliable source of compressed air that powers a wide range of equipment and tools. Here are some key roles of air compressors in manufacturing and industrial settings:

1. Pneumatic Tools and Equipment:

Air compressors power a wide range of pneumatic tools and equipment used in manufacturing processes. These tools include impact wrenches, air drills, sanders, grinders, nail guns, and spray guns. Compressed air provides the necessary force and energy for these tools, enabling efficient and precise operations.

2. Automation and Control Systems:

Compressed air is used in automation and control systems within manufacturing facilities. Pneumatic actuators and valves use compressed air to control the movement of machinery and components. These systems are widely used in assembly lines, packaging operations, and material handling processes.

3. Air Blowing and Cleaning:

Compressed air is employed for blowing and cleaning applications in manufacturing and industrial processes. Air blowguns and air nozzles are used to remove debris, dust, and contaminants from surfaces, machinery, and products. Compressed air is also used for drying, cooling, and purging operations.

4. Air Separation and Gas Generation:

Air compressors are used in air separation plants to generate industrial gases such as nitrogen, oxygen, and argon. These gases are essential for various industrial processes, including metal fabrication, chemical production, and food packaging.

5. HVAC Systems:

Compressed air is utilized in heating, ventilation, and air conditioning (HVAC) systems. It powers pneumatic actuators for damper control, pneumatic controls for pressure regulation, and pneumatic valves for flow control in HVAC applications.

6. Air Compression for Storage and Transport:

Compressed air is used for storage and transport purposes in manufacturing and industrial settings. It is often used to pressurize storage tanks or containers that hold gases or liquids. Compressed air also facilitates the transfer of materials through pipelines and pneumatic conveying systems.

7. Process Instrumentation:

Compressed air is utilized in process instrumentation and control systems. It powers pneumatic instruments such as pressure gauges, flow meters, and control valves. These instruments play a critical role in monitoring and regulating various parameters in industrial processes.

8. Material Handling and Pneumatic Conveying:

In manufacturing and industrial facilities, compressed air is used for material handling and pneumatic conveying systems. It enables the movement of bulk materials such as powders, granules, and pellets through pipelines, facilitating efficient and controlled material transfer.

Overall, air compressors are vital components in manufacturing and industrial processes, providing a versatile and efficient source of power for a wide range of applications. The specific role of air compressors may vary depending on the industry, process requirements, and operational needs.

air compressor

What is the purpose of an air compressor?

An air compressor serves the purpose of converting power, typically from an electric motor or an engine, into potential energy stored in compressed air. It achieves this by compressing and pressurizing air, which can then be used for various applications. Here’s a detailed explanation of the purpose of an air compressor:

1. Powering Pneumatic Tools: One of the primary uses of an air compressor is to power pneumatic tools. Compressed air can be used to operate a wide range of tools, such as impact wrenches, nail guns, paint sprayers, sanders, and drills. The compressed air provides the necessary force and energy to drive these tools, making them efficient and versatile.

2. Supplying Clean and Dry Air: Air compressors are often used to supply clean and dry compressed air for various industrial processes. Many manufacturing and production operations require a reliable source of compressed air that is free from moisture, oil, and other contaminants. Air compressors equipped with appropriate filters and dryers can deliver high-quality compressed air for applications such as instrumentation, control systems, and pneumatic machinery.

3. Inflating Tires and Sports Equipment: Air compressors are commonly used for inflating tires, whether it’s for vehicles, bicycles, or sports equipment. They provide a convenient and efficient method for quickly filling tires with the required pressure. Air compressors are also used for inflating sports balls, inflatable toys, and other similar items.

4. Operating HVAC Systems: Air compressors play a crucial role in the operation of heating, ventilation, and air conditioning (HVAC) systems. They provide compressed air for controlling and actuating dampers, valves, and actuators in HVAC systems, enabling precise regulation of air flow and temperature.

5. Assisting in Industrial Processes: Compressed air is utilized in various industrial processes. It can be used for air blow-off applications, cleaning and drying parts, powering air-operated machinery, and controlling pneumatic systems. Air compressors provide a reliable and efficient source of compressed air that can be tailored to meet the specific requirements of different industrial applications.

6. Supporting Scuba Diving and Breathing Systems: In scuba diving and other breathing systems, air compressors are responsible for filling diving tanks and supplying breathable air to divers. These compressors are designed to meet strict safety standards and deliver compressed air that is free from contaminants.

Overall, the purpose of an air compressor is to provide a versatile source of compressed air for powering tools, supplying clean air for various applications, inflating tires and sports equipment, supporting industrial processes, and facilitating breathing systems in specific contexts.

China wholesaler Hot Sale Reciprocating Double Piston Oil Free Compresseur Screw Air Compressor   air compressor CHINAMFG freightChina wholesaler Hot Sale Reciprocating Double Piston Oil Free Compresseur Screw Air Compressor   air compressor CHINAMFG freight
editor by CX 2024-02-20

China wholesaler Oil & Gas Synchronous Water Lubrication Rotary Screw Oil-Free Textile Water Lubricated Screw Air Compressor with Hot selling

Product Description

Product Details

Product Name: CHINAMFG Mini Stationary Air Compressor 
Model number: ZW-7.5
Maximum Pressure:10BAR/145PSI
Working Pressure: 7 – 10bar (100 – 145psi) 
Air Delivery/capacity: 1 – 1.2m3/min 
Motor Power: 7.5kw/10hp 
Lubricating Water Amount: 20 L
Rotation Rate : 2940 rpm
Noise Level: 70 dBA
Type of Driving: Directly Driven
Type of Cooling: Air Cooling/Water Cooling 
Dimension: 1135×800×1000 mm
Weight: 480kg
Air Outlet Discharge Size: G1″

Parameters

MODEL  MAXIMUM WORKING PRESSURE FREE AIR DELIVERY* OF UNIT AT WORKING PRESSURE MOTOR NOISE LEVEL Lubricating Water Rotation Rate AIR OUTLET DISCHARGE SIZE WEIGHT DIMENSIONS
Amount
Bar PSI l/s CFM m3/min kW HP dBA L rpm (mm) KG (mm)
ZW-7.5 7 102 20 43 1.2 7.5 10 61 20 2940 G1 480 1135×800×1000
8 116 18 39 1.1
10 145 17 36 1
ZW-11 7 102 27 57 1.6 11 15 61 20 2940 G1 500 1135X800×1000
8 116 25 54 1.5
10 145 22 46 1.3
ZW-15 7 102 40 86 2.4 15 20 61 27 2940 G1 520 1400×1000×1200
8 116 38  82 2.3
10 145 33  78 2
ZW-18.5 7 102 52 111 3.1 18.5 25 61 27 2940 G1 520 1400×1000×1200
8 116 47 100 2.8
10 145 42 89 2.5
ZW-22 7 102 62 132 3.7 22 30 61 27 2940 G1 560 1400×1000×1200
8 116 57 121 3.4
10 145 50 107 3
ZW-30 7 102 87 186 5.2 30 40 64 40 2940 G11/2 1050 1920×1170×1320
8 116 78 168 4.7
10 145 72 154 4.3
ZW-37 7 102 102 218 6.1 37 50 66 40 2940 G11/2 1050 1920×1170×1320
8 116 93 200 5.6
10 145 83 179 5
ZW-45 7 102 125 268 7.5 45 60 66 40 2960 G2 1610 1920×1170×1320
8 116 113 243 6.8
10 145 100 214 6
ZW-55 7 102 167 357 10 55 75 66 100 2960 G2 1610 1930×1320×1535
8 116 150 321 9
10 145 130 214 7.8
ZW-75 7 102 271 357 13 75 100 70 100 2960 G2 1880 1930×1320×1535
8 116 200 321 12
10 145 167 279 10
ZW-90 7 102 258 464 15.5 90 125 70 180 2970 DN80 2700 2150×1600×1000
8 116 233 429 14
10 145 208 357 12.5
ZW-110 7 102 333 554 20 110 150 72 200 2970 DN80 3100 2150×1600×1000
8 116 300 500 18
10 145 267 466 16 
ZW-132   7 102 417 893 25 132 180 72 240 2970 DN80 3250 2150×1600×1000
8 116 383 821 23
10 145 333 814 20

Advantages

√ Simple
One screw rotor and 2 gate rotors which are positioned at right angle to the axis constitute 2 compressing rooms. Therefore, the screw rotor with 6 grooves compresses as many as 12 times per rotation.
√ Quietness
Without applying thrust load to the axis direction of the rotor, the force in the circumference direction rotates quietly with good balance. As a result, the load to the bearing is lightened, minimizing the generation of noise or vibration.
√ Durability
The gate rotors are rotated following the rotation of the screw rotor along its gear. The water film formed on the screw rotor’s gear and the free floating mechanism maintains the high efficiency for a long time (in case of water lubrication).
√ High Efficiency
Since the lubrication water is jetted in the compressing process, the compression is done smoothly under almost even temperature, realizing ideal, safe and highly efficient compression with slow rotation (in case of water lubrication).

Comparison Water Lubricated oil-free single screw air compressor Dry oil-free double screw air compressor
Air Discharge Temp About 50ºC About 180-200ºC
Clearance Volume Rotor has been used twice through 1 circulation
No clearance volume left
Rotor has been used once through 1 circulation 
Existing clearance volume
Air Delivery Ideal isothemal compression,air delivery volume5%-12% more Energy lost due to hot air discharge
Efficiency Normally:59-6.4 kw/(m3/min) Normally:6.0-6.6 kw(m3/min)
Air Quality 100% oil-free Oil in the gear,high risk of air quality
Air Purity Purified by water,clean air after separation Directly compressed then discharge,containing dust and oil stain
Structure Balance Radial and axial loads cancel each other Radial load is not been balanced
Noise and Vibration Simple structure,Low vibration and less noise,Normally:60-65 dB(A) High frequency noise due to screw grinding,Normally:64-78 dB(A)
Durability Rotation speed 3000r/min,theoretically zeao load,long lifetime of screw(30000h),star wheel(50000h) Rotation speed 18000r/min,high loads on crews,short lifetime of screw(8000-18000h)
Installation Only a few spare parts,canbe installed and adjusted separately Complex construction,needs special technical support for installation
Maintenance Only replaced air filter and water filter,easy maintenance and low cost Many spare parts and less maintenance cycle,high cost

Application

Technical Solutions

Does the water corrode the air compressor system?
Water lubricated compressor is desirable to use pure drinking water standards,parts and materials is conform to the international standard grades of 304 and 316 stainless steel,will never rust.
Does the water affect the service life of bearings?
Uses a high-tech nanotechnology,customized silicon carbide bearing and ceramic bearing,lubrication with water directly,won’t any problems
Will the efficiency of water lubrication oil free compressor go down?
Technology is the only truly grasp the essence of a single screw manufacturing company in the world,inherited the Germany hundred processes and technologies,so the air end warranty for 2 years,the service life of up to 10 years or more,a single screw air end efficiency does not decrease more than 5% after 6 years.
Does the water form scale?
System uses pure water which is accord with driking water standards,water has been circulating in the system;and every 200hours total,the system will automatically change the water,make sure the water dows not increase the calcium content,and actively running a tempreature not higher than 50ºC,there is no risk of fouling.
Is the water content in water lubrication compressor air high?
After air compression,the water content has reached saturation,the water content of the compressed air only related to the tempreature,there is no relationship with other,the temperature of the compressed air generated by water lubrication unit is not higher than 50ºC,so the water lubricated compressed air moisture than other types of compressors units.

Sales Service

 Professional online consultant to solve your question about compressor system.

√ Free site design consultant, and energy saving solution to help you save operation cost.

√ Negotiable technician available to service machinery overseas.

√ Online professional after-service until solve the problem.

√ 1 year warranty after commissioning or 16 months against shipping date, it depends on which 1 come firstly for the whole
machine(except maintenance consumable).

√ A sufficient number of spare parts are available, make sure the good after service.

Certificate

About Mikovs
 

Mikovs Compressor      

  • Founded in 2011
  • Main product: air compressors, air dryers and air filters
  • Professional R&D team, accept customization order
  • Strong quality control team, quality is strictly controlled
 

RFQ

Q1. Are you trading company or manufacture ?

A: We are professional manufacture of screw air compressor more than 8 years.

 

Q2. How long is the delivery time ?

A: For standard voltage ,15 working days. Non-standard ,please contact our sales.

 

Q3. What’s payment term ?

A: T/T, L/C, D/P, Western Union, Paypal, Credit Card, and etc. Also we could accept USD, RMB, Euro and other currency.

  

Q4. How about your after-sales service ?

A: 1.Provide customers with installation and commissioning online instructions.

2. Well-trained engineers available to overseas service.

3.Worldwid agents and after service avaiable.arrange our engineers to help you training and installation.

 

Q5. How about your warranty?

 A: One year for the whole machine and 2 years for screw air end, except consumable spare parts.

 

 Q6. Do you have any certificate ?

 A: Yes, per different customer’s market need ,we can offer CE ,ISO etc certificate.

 

Q7. What about the maintenance ?

 A: First maintenance need to be done after 500Hours, and then every 2000-3000 hours to do the normal maintenance,
and consider the actual environment.

 

Q8. How do you control quality ?

A: 1.Raw- material in checking.

  2.Assembly.

 3.Worldwid after service available.arrange our engineers to help you training and installation.

 

 

Q9. Do you offer OEM service ?

A: Yes.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Lubrication Style: Oil-free
Cooling System: Air Cooling
Power Source: AC Power
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

Can air compressors be used for gas compression and storage?

Yes, air compressors can be used for gas compression and storage. While air compressors are commonly used to compress and store air, they can also be utilized for compressing and storing other gases, depending on the specific application requirements. Here’s how air compressors can be used for gas compression and storage:

Gas Compression:

Air compressors can compress various gases by utilizing the same principles applied to compressing air. The compressor takes in the gas at a certain pressure, and through the compression process, it increases the pressure and reduces the volume of the gas. This compressed gas can then be used for different purposes, such as in industrial processes, gas pipelines, or storage systems.

Gas Storage:

Air compressors can also be used for gas storage by compressing the gas into storage vessels or tanks. The compressed gas is stored at high pressure within these vessels until it is needed for use. Gas storage is commonly employed in industries where a continuous and reliable supply of gas is required, such as in natural gas storage facilities or for storing compressed natural gas (CNG) used as a fuel for vehicles.

Gas Types:

While air compressors are primarily designed for compressing air, they can be adapted to handle various gases, including but not limited to:

  • Nitrogen
  • Oxygen
  • Hydrogen
  • Carbon dioxide
  • Natural gas
  • Refrigerant gases

It’s important to note that when using air compressors for gas compression and storage, certain considerations must be taken into account. These include compatibility of the compressor materials with the specific gas being compressed, ensuring proper sealing to prevent gas leaks, and adhering to safety regulations and guidelines for handling and storing compressed gases.

By leveraging the capabilities of air compressors, it is possible to compress and store gases efficiently, providing a reliable supply for various industrial, commercial, and residential applications.

air compressor

How do you troubleshoot common air compressor problems?

Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:

1. No Power:

  • Check the power source and ensure the compressor is properly plugged in.
  • Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
  • Verify that the compressor’s power switch or control panel is turned on.

2. Low Air Pressure:

  • Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
  • Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
  • Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.

3. Excessive Noise or Vibration:

  • Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
  • Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
  • Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.

4. Air Leaks:

  • Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
  • Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
  • Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.

5. Excessive Moisture in Compressed Air:

  • Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
  • Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
  • Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.

6. Motor Overheating:

  • Ensure the compressor’s cooling system is clean and unobstructed.
  • Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
  • Verify that the compressor is not being operated in an excessively hot environment.
  • Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
  • Consider using a thermal overload protector to prevent the motor from overheating.

If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.

air compressor

How do you choose the right size of air compressor for your needs?

Choosing the right size of air compressor is essential to ensure optimal performance and efficiency for your specific needs. Here are some factors to consider when selecting the appropriate size:

1. Air Demand: Determine the air demand requirements of your applications. Calculate the total CFM (Cubic Feet per Minute) needed by considering the air consumption of all the pneumatic tools and equipment that will be operated simultaneously. Choose an air compressor with a CFM rating that meets or exceeds this total demand.

2. Pressure Requirements: Consider the required operating pressure for your applications. Check the PSI (Pounds per Square Inch) rating of the tools and equipment you will be using. Ensure that the air compressor you choose can deliver the necessary pressure consistently.

3. Duty Cycle: Evaluate the duty cycle of the air compressor. The duty cycle represents the percentage of time the compressor can operate within a given time period without overheating or experiencing performance issues. If you require continuous or heavy-duty operation, choose a compressor with a higher duty cycle.

4. Power Source: Determine the available power source at your location. Air compressors can be powered by electricity or gasoline engines. Ensure that the chosen compressor matches the available power supply and consider factors such as voltage, phase, and fuel requirements.

5. Portability: Assess the portability requirements of your applications. If you need to move the air compressor frequently or use it in different locations, consider a portable or wheeled compressor that is easy to transport.

6. Space and Noise Constraints: Consider the available space for installation and the noise restrictions in your working environment. Choose an air compressor that fits within the allocated space and meets any noise regulations or requirements.

7. Future Expansion: Anticipate any potential future expansions or increases in air demand. If you expect your air demand to grow over time, it may be wise to choose a slightly larger compressor to accommodate future needs and avoid the need for premature replacement.

8. Budget: Consider your budgetary constraints. Compare the prices of different air compressor models while ensuring that the chosen compressor meets your specific requirements. Keep in mind that investing in a higher-quality compressor may result in better performance, durability, and long-term cost savings.

By considering these factors and evaluating your specific needs, you can choose the right size of air compressor that will meet your air demand, pressure requirements, and operational preferences, ultimately ensuring efficient and reliable performance.

China wholesaler Oil & Gas Synchronous Water Lubrication Rotary Screw Oil-Free Textile Water Lubricated Screw Air Compressor   with Hot sellingChina wholesaler Oil & Gas Synchronous Water Lubrication Rotary Screw Oil-Free Textile Water Lubricated Screw Air Compressor   with Hot selling
editor by CX 2024-02-14

China OEM Oil Free CO2 Piston Reciprocating Air Booster Compressor air compressor price

Product Description

Detailed Photos

Oil Free CO2 Piston Reciprocating Air Booster Compressor

Description&Advantages

Product Descriptions:
The Carbon Dioxide compressors manufactured by ASC Compressor Factory are oil-free lubrication reciprocating piston compressors developed in collaboration with the German company CHINAMFG DEMAG. These models are known for their low energy consumption, minimal noise, reduced vibration, high reliability, and easy operation.

Each unit primarily consists of the compressor mainframe, electric motor, common base frame, air system, cooling system, lubrication system, instrument control system, drainage system, and electrical system. All components are generally installed on a single common base frame, which is then mounted on a concrete foundation, making it a fixed-type gas station. The connections between the equipment and the fixing points to the base are detachable, making transportation, installation, operation, and maintenance extremely convenient.

As a specialty gas compressor, this model can also compress gases like helium, natural gas, LPG, associated petroleum gas, hydrogen, argon, ethylene, propylene, propane, chloromethane, chloroethane, ethylene oxide, perfluoroethane, carbon monoxide, ammonia, dimethyl ether, carbon dioxide, and coal gas. It’s widely used in industries like petroleum, chemical, fertilizer, metallurgy, industrial gases, fuel gas, food, and more.

Advantages:
Our products, incorporating technology from Germany’s CHINAMFG Demag companies, exhibit high reliability.  Wearable parts like gas valves and piston rings use products from Austria’s Hoerbiger company, with a lifespan exceeding 8000 hours. The system supports soft starting, allowing frequent start and stop cycles for the compressor.   It features a wide intake range for broad adaptability. The overall skid-mounted structure results in low noise and is easy to install in urban areas, leading to investment savings.
It is equipped with a CHINAMFG PLC control system for high automation, ABB soft start (or variable frequency), and features automatic shutdown with audible and visual alarms in case of faults

Product Parameters

Model Flow m3/h Inlet Pressure
(Mpa)
Outlet Pressure
(Mpa)
Weight
(Kg)
Power
(Kw)
VW-6/16-24 360 1.6 2.4 2600 110
VW-6/(0-1.62)-(5-21) 360 0-0.162 0.5-2.1 2350 75
WW-26.7/0.5-10 1602 0.05 1 4500 250
DW-2/0.2-16 120 0.02 1.6 1500 22
WW-3/8 180 normal pressure 0.8 1500 22
2VW-50/3.5 3000 normal pressure 0.35 6000 220
2VW-16.7/0.5-20 1002 0.05 2 6500 185
ZW-0.6/6-10 36 0.6 1 760 5.5
ZW-0.8/12 48 normal pressure 1.2 1200 7.5
DW-9.5/7 570 normal pressure 0.7 2600 55
VW-4.5/0.5-10 270 0.05 1 2100 37
2VW-25/25 1500 normal pressure 2.5 2100 250
2VW-50/3.5 3000 normal pressure 0.35 6000 220
DW-4.5/0.5-13 270 0.05 1.3 2500 18.5
ZW-0.46/(5-10)-(15-20) 27.6 0.5-1.0 1.5-2.0 850 11
VW-5.6/(1.5-2)-25 27.6 0.15-0.2 2.5 2000 55
V-6.5/(1-3)-7 390 0.1-0.3 0.7 1900 37
WW-2.5/3-250 150 0.3 25 3500 110

Our Factory

 

Part of Customer Visit

 

Certifications & Testing

 

Related Product

 

FAQ

Q:Are you a factory?

A:Yes, we are indeed a factory. We specialize in manufacturing high-quality Air/Gas Compressors and are proud to be a primary source for these products.

Q:How long is your delivery time?
A:It varies depending on the specific situation. For our standard configuration compressors, the delivery time is around 30 days. For customized compressors, it usually takes about 30-45 days.

Q:What technical support do you offer?
A:We offer comprehensive technical support to our clients, including remote assistance for installation and commissioning processes. Additionally, we have a team of seasoned engineers ready to be deployed to international client locations for meticulous on-site debugging, installation, and post-installation services.

Q:What is your warranty period?
A:Our warranty policy is valid for a period of 18 months from the date of commissioning at the end customer’s site or 21 months from the date of receipt by the purchaser, whichever comes first. This comprehensive coverage is designed to ensure total customer satisfaction and the reliability of our products

Q:How do you package the compressors?
A:For smaller compressors, we utilize robust plywood boxes that conform to export specifications.
    For the larger units, we strategically place them in freight containers, implementing secure fastening methods to safeguard            against any potential damage during the shipping process.

Q:What are your payment terms?
A:Usually, the payment is made by T/T with a 30% down payment CHINAMFG confirmation of the Proforma Invoice (PI), and the balance is to be paid after inspection and before shipment. We accept both TT and L/C at sight.

Send message  Get product Offer & Brochure!!!

 ↓↓↓

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Local Teams
Warranty: 18 Months
Lubrication Style: Customized
Cooling System: Air Cooling/Water Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Customized
Samples:
US$ 40000/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What are the differences between stationary and portable air compressors?

Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:

1. Mobility:

The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.

2. Power Source:

Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.

3. Tank Capacity:

Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.

4. Performance and Output:

The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.

5. Noise Level:

Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.

6. Price and Cost:

Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.

When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.

air compressor

How are air compressors employed in the mining industry?

Air compressors play a crucial role in the mining industry, providing reliable and efficient power for various mining operations. Here are some common applications of air compressors in mining:

1. Exploration and Drilling:

Air compressors are used during exploration and drilling activities in the mining industry. Compressed air is used to power drilling rigs, pneumatic hammers, and other drilling equipment. The high-pressure air generated by the compressor helps in drilling boreholes, extracting core samples, and exploring potential mineral deposits.

2. Ventilation and Air Quality Control:

Air compressors are employed in underground mining to provide ventilation and control air quality. Compressed air is used to operate ventilation fans and air circulation systems, ensuring adequate airflow and removing harmful gases, dust, and fumes from the mining tunnels and work areas.

3. Material Conveyance:

In mining operations, air compressors are used for material conveyance. Pneumatic systems powered by air compressors are utilized to transport materials such as coal, ore, and other minerals. Compressed air is used to operate pneumatic conveyors, pumps, and material handling equipment, allowing for efficient and controlled movement of bulk materials.

4. Dust Suppression:

Air compressors are employed for dust suppression in mining areas. Compressed air is used to spray water or other suppressants to control dust generated during mining activities. This helps in maintaining a safe and healthy work environment, reducing the risks associated with dust inhalation and improving visibility.

5. Instrumentation and Control:

Air compressors are used for instrumentation and control purposes in mining operations. Compressed air is utilized to power pneumatic control systems, control valves, and actuators. These systems regulate the flow of fluids, control equipment movements, and ensure the proper functioning of various mining processes.

6. Explosive Applications:

In mining, air compressors are used for explosive applications. Compressed air is employed to power pneumatic tools used for rock fragmentation, such as rock drills and pneumatic breakers. The controlled power of compressed air enables safe and efficient rock breaking without the need for traditional explosives.

7. Maintenance and Repair:

Air compressors are essential for maintenance and repair activities in the mining industry. Compressed air is used for cleaning machinery, removing debris, and powering pneumatic tools for equipment maintenance and repair tasks. The versatility and portability of air compressors make them valuable assets in maintaining mining equipment.

It is important to note that different mining operations may have specific requirements and considerations when selecting and using air compressors. The size, capacity, and features of air compressors can vary based on the specific mining application and environmental conditions.

By utilizing air compressors effectively, the mining industry can benefit from increased productivity, improved safety, and efficient operation of various mining processes.

air compressor

Can air compressors be used for automotive applications?

Yes, air compressors can be used for various automotive applications and are commonly found in automotive repair shops, garages, and even in some vehicles. Here are some automotive applications where air compressors are frequently utilized:

1. Tire Inflation: Air compressors are commonly used to inflate tires in automotive applications. They provide a convenient and efficient way to inflate tires to the recommended pressure, ensuring optimal tire performance, fuel efficiency, and safety.

2. Air Tools: Air compressors power a wide range of pneumatic tools used in automotive repair and maintenance. These tools include impact wrenches, ratchet wrenches, air hammers, pneumatic drills, and sanders. Air-powered tools are favored for their high torque and power-to-weight ratio, making them suitable for heavy-duty automotive tasks.

3. Spray Painting: Air compressors are commonly used in automotive painting applications. They power airbrushes and spray guns that are used to apply paint, primer, and clear coats. Air compressors provide the necessary air pressure to atomize the paint and deliver a smooth and even finish.

4. Brake System Maintenance: Air compressors play a crucial role in maintaining and diagnosing automotive brake systems. They are used to pressurize the brake lines, allowing for proper bleeding of the system and detection of leaks or faults.

5. Suspension Systems: Some automotive suspension systems, such as air suspensions, rely on air compressors to maintain the desired air pressure in the suspension components. The compressor inflates or deflates the suspension as needed to provide a comfortable ride and optimal handling.

6. Cleaning and Dusting: Air compressors are used for cleaning automotive parts, blowing away dust and debris, and drying surfaces. They provide a high-pressure stream of air that effectively cleans hard-to-reach areas.

7. Air Conditioning Systems: Air compressors are a key component in automotive air conditioning systems. They compress and circulate refrigerant, allowing the system to cool and dehumidify the air inside the vehicle.

When using air compressors for automotive applications, it’s important to consider the specific requirements of the task at hand. Ensure that the air compressor has the necessary pressure and capacity to meet the demands of the application. Additionally, use appropriate air hoses, fittings, and tools that are compatible with the compressor’s output.

Overall, air compressors are versatile and valuable tools in the automotive industry, providing efficient power sources for a wide range of applications, from tire inflation to powering pneumatic tools and supporting various automotive systems.

China OEM Oil Free CO2 Piston Reciprocating Air Booster Compressor   air compressor priceChina OEM Oil Free CO2 Piston Reciprocating Air Booster Compressor   air compressor price
editor by CX 2024-02-14

China best Oil Cooling Lubricated Portable Screw Diesel Air Compressor with Good Price 12-10 best air compressor

Product Description

Product Description

Diesel mobile screw air compressor

This series of products pay more attention to the structural layout of products and the application of innovative technologies while improving the strength of the machine body. The self-developed cooler is equipped with fans with corresponding speed ratio, which can ignore all the high temperature weather. Diesel engines operating at economic speeds can improve fuel economy while operating at low noise. The double-door design greatly solves the trouble of inconvenient replacement of filter element during maintenance.

TECHNICAL SPECIFICATIONS
Type Screw Air Compressor
Item  12/10
Rated FAD 12 m³/min
Rate Pressure 10 bar
Diesel Brand Yuchai Diesel
Engine Power 110KW
Compression stage single Stage
Whole Machine walking mode 4 wheels
Dimensions (L*W*H) 3000*1776*2420mm
Weight 2500KG

 

Detailed Photos

 

 

Packaging & Shipping

 

Company Profile

FAQ

Q1: Are you factory or trade company?
A1: We are factory. And we have ourselves trading company.

Q2: What the exactly address of your factory?
A2: Our company is located in Kaixuan Road ,Economic Zone HangZhou, ZHangZhoug, China

Q3: Warranty terms of your machine?
A3: One year warranty for the machine and technical support according to your needs.

Q4: Will you provide some spare parts of the machines?
A4: Yes, of course.

Q5: What about the voltage of products? Can they be customized?
A5: Yes, of course. The voltage can be customized according to your equirement.

Q6: Which payment term can you accept?
A6: 30% T/T in advanced, 70% T/T against the B/L copy.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Lubrication Style: Lubricated
Cooling System: Oil Cooling
Power Source: Diesel Engine
Cylinder Position: Angular
Structure Type: Closed Type
Customization:
Available

|

air compressor

What are the energy-saving technologies available for air compressors?

There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:

1. Variable Speed Drive (VSD) Compressors:

VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.

2. Energy-Efficient Motors:

The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.

3. Heat Recovery Systems:

Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.

4. Air Receiver Tanks:

Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.

5. System Control and Automation:

Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.

6. Leak Detection and Repair:

Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.

7. System Optimization and Maintenance:

Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.

By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.

air compressor

How are air compressors employed in the mining industry?

Air compressors play a crucial role in the mining industry, providing reliable and efficient power for various mining operations. Here are some common applications of air compressors in mining:

1. Exploration and Drilling:

Air compressors are used during exploration and drilling activities in the mining industry. Compressed air is used to power drilling rigs, pneumatic hammers, and other drilling equipment. The high-pressure air generated by the compressor helps in drilling boreholes, extracting core samples, and exploring potential mineral deposits.

2. Ventilation and Air Quality Control:

Air compressors are employed in underground mining to provide ventilation and control air quality. Compressed air is used to operate ventilation fans and air circulation systems, ensuring adequate airflow and removing harmful gases, dust, and fumes from the mining tunnels and work areas.

3. Material Conveyance:

In mining operations, air compressors are used for material conveyance. Pneumatic systems powered by air compressors are utilized to transport materials such as coal, ore, and other minerals. Compressed air is used to operate pneumatic conveyors, pumps, and material handling equipment, allowing for efficient and controlled movement of bulk materials.

4. Dust Suppression:

Air compressors are employed for dust suppression in mining areas. Compressed air is used to spray water or other suppressants to control dust generated during mining activities. This helps in maintaining a safe and healthy work environment, reducing the risks associated with dust inhalation and improving visibility.

5. Instrumentation and Control:

Air compressors are used for instrumentation and control purposes in mining operations. Compressed air is utilized to power pneumatic control systems, control valves, and actuators. These systems regulate the flow of fluids, control equipment movements, and ensure the proper functioning of various mining processes.

6. Explosive Applications:

In mining, air compressors are used for explosive applications. Compressed air is employed to power pneumatic tools used for rock fragmentation, such as rock drills and pneumatic breakers. The controlled power of compressed air enables safe and efficient rock breaking without the need for traditional explosives.

7. Maintenance and Repair:

Air compressors are essential for maintenance and repair activities in the mining industry. Compressed air is used for cleaning machinery, removing debris, and powering pneumatic tools for equipment maintenance and repair tasks. The versatility and portability of air compressors make them valuable assets in maintaining mining equipment.

It is important to note that different mining operations may have specific requirements and considerations when selecting and using air compressors. The size, capacity, and features of air compressors can vary based on the specific mining application and environmental conditions.

By utilizing air compressors effectively, the mining industry can benefit from increased productivity, improved safety, and efficient operation of various mining processes.

air compressor

How is air pressure measured in air compressors?

Air pressure in air compressors is typically measured using one of two common units: pounds per square inch (PSI) or bar. Here’s a brief explanation of how air pressure is measured in air compressors:

1. Pounds per Square Inch (PSI): PSI is the most widely used unit of pressure measurement in air compressors, especially in North America. It represents the force exerted by one pound of force over an area of one square inch. Air pressure gauges on air compressors often display pressure readings in PSI, allowing users to monitor and adjust the pressure accordingly.

2. Bar: Bar is another unit of pressure commonly used in air compressors, particularly in Europe and many other parts of the world. It is a metric unit of pressure equal to 100,000 pascals (Pa). Air compressors may have pressure gauges that display readings in bar, providing an alternative measurement option for users in those regions.

To measure air pressure in an air compressor, a pressure gauge is typically installed on the compressor’s outlet or receiver tank. The gauge is designed to measure the force exerted by the compressed air and display the reading in the specified unit, such as PSI or bar.

It’s important to note that the air pressure indicated on the gauge represents the pressure at a specific point in the air compressor system, typically at the outlet or tank. The actual pressure experienced at the point of use may vary due to factors such as pressure drop in the air lines or restrictions caused by fittings and tools.

When using an air compressor, it is essential to set the pressure to the appropriate level required for the specific application. Different tools and equipment have different pressure requirements, and exceeding the recommended pressure can lead to damage or unsafe operation. Most air compressors allow users to adjust the pressure output using a pressure regulator or similar control mechanism.

Regular monitoring of the air pressure in an air compressor is crucial to ensure optimal performance, efficiency, and safe operation. By understanding the units of measurement and using pressure gauges appropriately, users can maintain the desired air pressure levels in their air compressor systems.

China best Oil Cooling Lubricated Portable Screw Diesel Air Compressor with Good Price 12-10   best air compressorChina best Oil Cooling Lubricated Portable Screw Diesel Air Compressor with Good Price 12-10   best air compressor
editor by CX 2024-02-11

China factory Oil Free Air Compressor Oilless Industry Single Screw Air Comopressors Tr-22va/W 22kw wholesaler

Product Description

Lead Time

Product Description

TR-22VA/W 0.8-1.25Mpa 8-12.5Bar 0.85-3.7m3/min 22KW air compressor oil free screw scroll China

Specifications
 

Model

Maximum

working

Pressure

FAD

Motor

Power

Noise

Pipe diameters of

cooling water

in and out

Quantity of 
cooling water

Quantity of

lubricating

water

Dimension Weight

Air

outlet

 Inlet water

32ºC 

L*W*H
Mpa M3/min KW DB  T/H L mm KG
TR-08VA/W 0.8 0.35-1.17 7.5 57 3/4″ 2 10 8.4) optimized design, large rotor, low rotary speed (within 3000r/min), without the gearbox.

direct connection drive, it has a lower rotary speed and longer life compared with dry oil-free screw air compressor(10000r/min-20000r/min).

12. Automatic Cleaning System

The function of automatic water exchange and automatic system cleaning can be realized, and the interior of the compressor is more clean and sanitary.
 

Introduction

Company Information

Package Delivery

 

BACK HOME

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Lubrication Style: Oil-free
Cooling System: Water Cooling
Power Source: AC Power
Structure Type: Closed Type
Installation Type: Stationary Type
Type: Single Screw Compressor
Samples:
US$ 86800/set(s)
1 set(s)(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

Can air compressors be used for painting and sandblasting?

Yes, air compressors can be used for both painting and sandblasting applications. Here’s a closer look at how air compressors are utilized for painting and sandblasting:

Painting:

Air compressors are commonly used in painting processes, especially in automotive, industrial, and construction applications. Here’s how they are involved:

  • Spray Guns: Air compressors power spray guns used for applying paint coatings. The compressed air atomizes the paint, creating a fine mist that can be evenly sprayed onto surfaces. The pressure and volume of the compressed air impact the spray pattern, coverage, and overall finish quality.
  • Paint Mixers and Agitators: Compressed air is often used to power mixers and agitators that ensure proper blending of paint components. These devices use the compressed air to stir or circulate the paint, preventing settling and maintaining a consistent mixture.
  • Airbrushing: Air compressors are essential for airbrushing techniques, which require precise control over airflow and pressure. Airbrushes are commonly used in artistic applications, such as illustrations, murals, and fine detailing work.

Sandblasting:

Air compressors play a crucial role in sandblasting operations, which involve propelling abrasive materials at high velocity to clean, etch, or prepare surfaces. Here’s how air compressors are used in sandblasting:

  • Blasting Cabinets: Air compressors power blasting cabinets or booths, which are enclosed spaces where the sandblasting process takes place. The compressed air propels the abrasive media, such as sand or grit, through a nozzle or gun, creating a forceful stream that impacts the surface being treated.
  • Abrasive Blasting Pots: Air compressors supply air to abrasive blasting pots or tanks that store and pressurize the abrasive media. The compressed air from the compressor enters the pot, pressurizing it and allowing for a controlled release of the abrasive material during the sandblasting process.
  • Air Dryers and Filters: In sandblasting applications, it is crucial to have clean, dry air to prevent moisture and contaminants from affecting the abrasive blasting process and the quality of the surface being treated. Air compressors may be equipped with air dryers and filters to remove moisture, oil, and impurities from the compressed air.

When using air compressors for painting or sandblasting, it is important to consider factors such as the compressor’s pressure and volume output, the specific requirements of the application, and the type of tools or equipment being used. Consult the manufacturer’s guidelines and recommendations to ensure the air compressor is suitable for the intended painting or sandblasting tasks.

Proper safety measures, such as wearing protective gear and following established protocols, should always be followed when working with air compressors for painting and sandblasting applications.

air compressor

How do you troubleshoot common air compressor problems?

Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:

1. No Power:

  • Check the power source and ensure the compressor is properly plugged in.
  • Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
  • Verify that the compressor’s power switch or control panel is turned on.

2. Low Air Pressure:

  • Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
  • Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
  • Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.

3. Excessive Noise or Vibration:

  • Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
  • Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
  • Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.

4. Air Leaks:

  • Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
  • Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
  • Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.

5. Excessive Moisture in Compressed Air:

  • Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
  • Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
  • Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.

6. Motor Overheating:

  • Ensure the compressor’s cooling system is clean and unobstructed.
  • Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
  • Verify that the compressor is not being operated in an excessively hot environment.
  • Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
  • Consider using a thermal overload protector to prevent the motor from overheating.

If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.

air compressor

How do you choose the right size of air compressor for your needs?

Choosing the right size of air compressor is essential to ensure optimal performance and efficiency for your specific needs. Here are some factors to consider when selecting the appropriate size:

1. Air Demand: Determine the air demand requirements of your applications. Calculate the total CFM (Cubic Feet per Minute) needed by considering the air consumption of all the pneumatic tools and equipment that will be operated simultaneously. Choose an air compressor with a CFM rating that meets or exceeds this total demand.

2. Pressure Requirements: Consider the required operating pressure for your applications. Check the PSI (Pounds per Square Inch) rating of the tools and equipment you will be using. Ensure that the air compressor you choose can deliver the necessary pressure consistently.

3. Duty Cycle: Evaluate the duty cycle of the air compressor. The duty cycle represents the percentage of time the compressor can operate within a given time period without overheating or experiencing performance issues. If you require continuous or heavy-duty operation, choose a compressor with a higher duty cycle.

4. Power Source: Determine the available power source at your location. Air compressors can be powered by electricity or gasoline engines. Ensure that the chosen compressor matches the available power supply and consider factors such as voltage, phase, and fuel requirements.

5. Portability: Assess the portability requirements of your applications. If you need to move the air compressor frequently or use it in different locations, consider a portable or wheeled compressor that is easy to transport.

6. Space and Noise Constraints: Consider the available space for installation and the noise restrictions in your working environment. Choose an air compressor that fits within the allocated space and meets any noise regulations or requirements.

7. Future Expansion: Anticipate any potential future expansions or increases in air demand. If you expect your air demand to grow over time, it may be wise to choose a slightly larger compressor to accommodate future needs and avoid the need for premature replacement.

8. Budget: Consider your budgetary constraints. Compare the prices of different air compressor models while ensuring that the chosen compressor meets your specific requirements. Keep in mind that investing in a higher-quality compressor may result in better performance, durability, and long-term cost savings.

By considering these factors and evaluating your specific needs, you can choose the right size of air compressor that will meet your air demand, pressure requirements, and operational preferences, ultimately ensuring efficient and reliable performance.

China factory Oil Free Air Compressor Oilless Industry Single Screw Air Comopressors Tr-22va/W 22kw   wholesaler China factory Oil Free Air Compressor Oilless Industry Single Screw Air Comopressors Tr-22va/W 22kw   wholesaler
editor by CX 2024-02-09