Product Description
Product Details
| Product Name: CHINAMFG Mini Stationary Air Compressor |
| Model number: ZW-7.5 |
| Maximum Pressure:10BAR/145PSI |
| Working Pressure: 7 – 10bar (100 – 145psi) |
| Air Delivery/capacity: 1 – 1.2m3/min |
| Motor Power: 7.5kw/10hp |
| Lubricating Water Amount: 20 L |
| Rotation Rate : 2940 rpm |
| Noise Level: 70 dBA |
| Type of Driving: Directly Driven |
| Type of Cooling: Air Cooling/Water Cooling |
| Dimension: 1135×800×1000 mm |
| Weight: 480kg |
| Air Outlet Discharge Size: G1″ |
Parameters
| MODEL | MAXIMUM WORKING PRESSURE | FREE AIR DELIVERY* OF UNIT AT WORKING PRESSURE | MOTOR | NOISE LEVEL | Lubricating Water | Rotation Rate | AIR OUTLET DISCHARGE SIZE | WEIGHT | DIMENSIONS | ||||
| Amount | |||||||||||||
| Bar | PSI | l/s | CFM | m3/min | kW | HP | dBA | L | rpm | (mm) | KG | (mm) | |
| ZW-7.5 | 7 | 102 | 20 | 43 | 1.2 | 7.5 | 10 | 61 | 20 | 2940 | G1 | 480 | 1135×800×1000 |
| 8 | 116 | 18 | 39 | 1.1 | |||||||||
| 10 | 145 | 17 | 36 | 1 | |||||||||
| ZW-11 | 7 | 102 | 27 | 57 | 1.6 | 11 | 15 | 61 | 20 | 2940 | G1 | 500 | 1135X800×1000 |
| 8 | 116 | 25 | 54 | 1.5 | |||||||||
| 10 | 145 | 22 | 46 | 1.3 | |||||||||
| ZW-15 | 7 | 102 | 40 | 86 | 2.4 | 15 | 20 | 61 | 27 | 2940 | G1 | 520 | 1400×1000×1200 |
| 8 | 116 | 38 | 82 | 2.3 | |||||||||
| 10 | 145 | 33 | 78 | 2 | |||||||||
| ZW-18.5 | 7 | 102 | 52 | 111 | 3.1 | 18.5 | 25 | 61 | 27 | 2940 | G1 | 520 | 1400×1000×1200 |
| 8 | 116 | 47 | 100 | 2.8 | |||||||||
| 10 | 145 | 42 | 89 | 2.5 | |||||||||
| ZW-22 | 7 | 102 | 62 | 132 | 3.7 | 22 | 30 | 61 | 27 | 2940 | G1 | 560 | 1400×1000×1200 |
| 8 | 116 | 57 | 121 | 3.4 | |||||||||
| 10 | 145 | 50 | 107 | 3 | |||||||||
| ZW-30 | 7 | 102 | 87 | 186 | 5.2 | 30 | 40 | 64 | 40 | 2940 | G11/2 | 1050 | 1920×1170×1320 |
| 8 | 116 | 78 | 168 | 4.7 | |||||||||
| 10 | 145 | 72 | 154 | 4.3 | |||||||||
| ZW-37 | 7 | 102 | 102 | 218 | 6.1 | 37 | 50 | 66 | 40 | 2940 | G11/2 | 1050 | 1920×1170×1320 |
| 8 | 116 | 93 | 200 | 5.6 | |||||||||
| 10 | 145 | 83 | 179 | 5 | |||||||||
| ZW-45 | 7 | 102 | 125 | 268 | 7.5 | 45 | 60 | 66 | 40 | 2960 | G2 | 1610 | 1920×1170×1320 |
| 8 | 116 | 113 | 243 | 6.8 | |||||||||
| 10 | 145 | 100 | 214 | 6 | |||||||||
| ZW-55 | 7 | 102 | 167 | 357 | 10 | 55 | 75 | 66 | 100 | 2960 | G2 | 1610 | 1930×1320×1535 |
| 8 | 116 | 150 | 321 | 9 | |||||||||
| 10 | 145 | 130 | 214 | 7.8 | |||||||||
| ZW-75 | 7 | 102 | 271 | 357 | 13 | 75 | 100 | 70 | 100 | 2960 | G2 | 1880 | 1930×1320×1535 |
| 8 | 116 | 200 | 321 | 12 | |||||||||
| 10 | 145 | 167 | 279 | 10 | |||||||||
| ZW-90 | 7 | 102 | 258 | 464 | 15.5 | 90 | 125 | 70 | 180 | 2970 | DN80 | 2700 | 2150×1600×1000 |
| 8 | 116 | 233 | 429 | 14 | |||||||||
| 10 | 145 | 208 | 357 | 12.5 | |||||||||
| ZW-110 | 7 | 102 | 333 | 554 | 20 | 110 | 150 | 72 | 200 | 2970 | DN80 | 3100 | 2150×1600×1000 |
| 8 | 116 | 300 | 500 | 18 | |||||||||
| 10 | 145 | 267 | 466 | 16 | |||||||||
| ZW-132 | 7 | 102 | 417 | 893 | 25 | 132 | 180 | 72 | 240 | 2970 | DN80 | 3250 | 2150×1600×1000 |
| 8 | 116 | 383 | 821 | 23 | |||||||||
| 10 | 145 | 333 | 814 | 20 | |||||||||
Advantages
| √ Simple |
| One screw rotor and 2 gate rotors which are positioned at right angle to the axis constitute 2 compressing rooms. Therefore, the screw rotor with 6 grooves compresses as many as 12 times per rotation. |
| √ Quietness |
| Without applying thrust load to the axis direction of the rotor, the force in the circumference direction rotates quietly with good balance. As a result, the load to the bearing is lightened, minimizing the generation of noise or vibration. |
| √ Durability |
| The gate rotors are rotated following the rotation of the screw rotor along its gear. The water film formed on the screw rotor’s gear and the free floating mechanism maintains the high efficiency for a long time (in case of water lubrication). |
| √ High Efficiency |
| Since the lubrication water is jetted in the compressing process, the compression is done smoothly under almost even temperature, realizing ideal, safe and highly efficient compression with slow rotation (in case of water lubrication). |
| Comparison | Water Lubricated oil-free single screw air compressor | Dry oil-free double screw air compressor |
| Air Discharge Temp | About 50ºC | About 180-200ºC |
| Clearance Volume | Rotor has been used twice through 1 circulation No clearance volume left |
Rotor has been used once through 1 circulation Existing clearance volume |
| Air Delivery | Ideal isothemal compression,air delivery volume5%-12% more | Energy lost due to hot air discharge |
| Efficiency | Normally:59-6.4 kw/(m3/min) | Normally:6.0-6.6 kw(m3/min) |
| Air Quality | 100% oil-free | Oil in the gear,high risk of air quality |
| Air Purity | Purified by water,clean air after separation | Directly compressed then discharge,containing dust and oil stain |
| Structure Balance | Radial and axial loads cancel each other | Radial load is not been balanced |
| Noise and Vibration | Simple structure,Low vibration and less noise,Normally:60-65 dB(A) | High frequency noise due to screw grinding,Normally:64-78 dB(A) |
| Durability | Rotation speed 3000r/min,theoretically zeao load,long lifetime of screw(30000h),star wheel(50000h) | Rotation speed 18000r/min,high loads on crews,short lifetime of screw(8000-18000h) |
| Installation | Only a few spare parts,canbe installed and adjusted separately | Complex construction,needs special technical support for installation |
| Maintenance | Only replaced air filter and water filter,easy maintenance and low cost | Many spare parts and less maintenance cycle,high cost |
Application
Technical Solutions
| ? Does the water corrode the air compressor system? |
| Water lubricated compressor is desirable to use pure drinking water standards,parts and materials is conform to the international standard grades of 304 and 316 stainless steel,will never rust. |
| ? Does the water affect the service life of bearings? |
| Uses a high-tech nanotechnology,customized silicon carbide bearing and ceramic bearing,lubrication with water directly,won’t any problems |
| ? Will the efficiency of water lubrication oil free compressor go down? |
| Technology is the only truly grasp the essence of a single screw manufacturing company in the world,inherited the Germany hundred processes and technologies,so the air end warranty for 2 years,the service life of up to 10 years or more,a single screw air end efficiency does not decrease more than 5% after 6 years. |
| ? Does the water form scale? |
| System uses pure water which is accord with driking water standards,water has been circulating in the system;and every 200hours total,the system will automatically change the water,make sure the water dows not increase the calcium content,and actively running a tempreature not higher than 50ºC,there is no risk of fouling. |
| ? Is the water content in water lubrication compressor air high? |
| After air compression,the water content has reached saturation,the water content of the compressed air only related to the tempreature,there is no relationship with other,the temperature of the compressed air generated by water lubrication unit is not higher than 50ºC,so the water lubricated compressed air moisture than other types of compressors units. |
Sales Service
Professional online consultant to solve your question about compressor system.
√ Free site design consultant, and energy saving solution to help you save operation cost.
√ Negotiable technician available to service machinery overseas.
√ Online professional after-service until solve the problem.
√ 1 year warranty after commissioning or 16 months against shipping date, it depends on which 1 come firstly for the whole
machine(except maintenance consumable).
√ A sufficient number of spare parts are available, make sure the good after service.
Certificate
About Mikovs
|
Mikovs Compressor
|
RFQ
Q1. Are you trading company or manufacture ?
A: We are professional manufacture of screw air compressor more than 8 years.
Q2. How long is the delivery time ?
A: For standard voltage ,15 working days. Non-standard ,please contact our sales.
Q3. What’s payment term ?
A: T/T, L/C, D/P, Western Union, Paypal, Credit Card, and etc. Also we could accept USD, RMB, Euro and other currency.
Q4. How about your after-sales service ?
A: 1.Provide customers with installation and commissioning online instructions.
2. Well-trained engineers available to overseas service.
3.Worldwid agents and after service avaiable.arrange our engineers to help you training and installation.
Q5. How about your warranty?
A: One year for the whole machine and 2 years for screw air end, except consumable spare parts.
Q6. Do you have any certificate ?
A: Yes, per different customer’s market need ,we can offer CE ,ISO etc certificate.
Q7. What about the maintenance ?
A: First maintenance need to be done after 500Hours, and then every 2000-3000 hours to do the normal maintenance,
and consider the actual environment.
Q8. How do you control quality ?
A: 1.Raw- material in checking.
2.Assembly.
3.Worldwid after service available.arrange our engineers to help you training and installation.
Q9. Do you offer OEM service ?
A: Yes.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Oil-free |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
| Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
Can air compressors be used for gas compression and storage?
Yes, air compressors can be used for gas compression and storage. While air compressors are commonly used to compress and store air, they can also be utilized for compressing and storing other gases, depending on the specific application requirements. Here’s how air compressors can be used for gas compression and storage:
Gas Compression:
Air compressors can compress various gases by utilizing the same principles applied to compressing air. The compressor takes in the gas at a certain pressure, and through the compression process, it increases the pressure and reduces the volume of the gas. This compressed gas can then be used for different purposes, such as in industrial processes, gas pipelines, or storage systems.
Gas Storage:
Air compressors can also be used for gas storage by compressing the gas into storage vessels or tanks. The compressed gas is stored at high pressure within these vessels until it is needed for use. Gas storage is commonly employed in industries where a continuous and reliable supply of gas is required, such as in natural gas storage facilities or for storing compressed natural gas (CNG) used as a fuel for vehicles.
Gas Types:
While air compressors are primarily designed for compressing air, they can be adapted to handle various gases, including but not limited to:
- Nitrogen
- Oxygen
- Hydrogen
- Carbon dioxide
- Natural gas
- Refrigerant gases
It’s important to note that when using air compressors for gas compression and storage, certain considerations must be taken into account. These include compatibility of the compressor materials with the specific gas being compressed, ensuring proper sealing to prevent gas leaks, and adhering to safety regulations and guidelines for handling and storing compressed gases.
By leveraging the capabilities of air compressors, it is possible to compress and store gases efficiently, providing a reliable supply for various industrial, commercial, and residential applications.
.webp)
How do you troubleshoot common air compressor problems?
Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:
1. No Power:
- Check the power source and ensure the compressor is properly plugged in.
- Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
- Verify that the compressor’s power switch or control panel is turned on.
2. Low Air Pressure:
- Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
- Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
- Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.
3. Excessive Noise or Vibration:
- Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
- Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
- Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.
4. Air Leaks:
- Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
- Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
- Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.
5. Excessive Moisture in Compressed Air:
- Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
- Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
- Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.
6. Motor Overheating:
- Ensure the compressor’s cooling system is clean and unobstructed.
- Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
- Verify that the compressor is not being operated in an excessively hot environment.
- Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
- Consider using a thermal overload protector to prevent the motor from overheating.
If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.
.webp)
How do you choose the right size of air compressor for your needs?
Choosing the right size of air compressor is essential to ensure optimal performance and efficiency for your specific needs. Here are some factors to consider when selecting the appropriate size:
1. Air Demand: Determine the air demand requirements of your applications. Calculate the total CFM (Cubic Feet per Minute) needed by considering the air consumption of all the pneumatic tools and equipment that will be operated simultaneously. Choose an air compressor with a CFM rating that meets or exceeds this total demand.
2. Pressure Requirements: Consider the required operating pressure for your applications. Check the PSI (Pounds per Square Inch) rating of the tools and equipment you will be using. Ensure that the air compressor you choose can deliver the necessary pressure consistently.
3. Duty Cycle: Evaluate the duty cycle of the air compressor. The duty cycle represents the percentage of time the compressor can operate within a given time period without overheating or experiencing performance issues. If you require continuous or heavy-duty operation, choose a compressor with a higher duty cycle.
4. Power Source: Determine the available power source at your location. Air compressors can be powered by electricity or gasoline engines. Ensure that the chosen compressor matches the available power supply and consider factors such as voltage, phase, and fuel requirements.
5. Portability: Assess the portability requirements of your applications. If you need to move the air compressor frequently or use it in different locations, consider a portable or wheeled compressor that is easy to transport.
6. Space and Noise Constraints: Consider the available space for installation and the noise restrictions in your working environment. Choose an air compressor that fits within the allocated space and meets any noise regulations or requirements.
7. Future Expansion: Anticipate any potential future expansions or increases in air demand. If you expect your air demand to grow over time, it may be wise to choose a slightly larger compressor to accommodate future needs and avoid the need for premature replacement.
8. Budget: Consider your budgetary constraints. Compare the prices of different air compressor models while ensuring that the chosen compressor meets your specific requirements. Keep in mind that investing in a higher-quality compressor may result in better performance, durability, and long-term cost savings.
By considering these factors and evaluating your specific needs, you can choose the right size of air compressor that will meet your air demand, pressure requirements, and operational preferences, ultimately ensuring efficient and reliable performance.


editor by CX 2024-02-14
China best Oil Cooling Lubricated Portable Screw Diesel Air Compressor with Good Price 12-10 best air compressor
Product Description
Product Description
Diesel mobile screw air compressor
This series of products pay more attention to the structural layout of products and the application of innovative technologies while improving the strength of the machine body. The self-developed cooler is equipped with fans with corresponding speed ratio, which can ignore all the high temperature weather. Diesel engines operating at economic speeds can improve fuel economy while operating at low noise. The double-door design greatly solves the trouble of inconvenient replacement of filter element during maintenance.
| TECHNICAL SPECIFICATIONS | |
| Type | Screw Air Compressor |
| Item | 12/10 |
| Rated FAD | 12 m³/min |
| Rate Pressure | 10 bar |
| Diesel Brand | Yuchai Diesel |
| Engine Power | 110KW |
| Compression stage | single Stage |
| Whole Machine walking mode | 4 wheels |
| Dimensions (L*W*H) | 3000*1776*2420mm |
| Weight | 2500KG |
Detailed Photos
Packaging & Shipping
Company Profile
FAQ
Q1: Are you factory or trade company?
A1: We are factory. And we have ourselves trading company.
Q2: What the exactly address of your factory?
A2: Our company is located in Kaixuan Road ,Economic Zone HangZhou, ZHangZhoug, China
Q3: Warranty terms of your machine?
A3: One year warranty for the machine and technical support according to your needs.
Q4: Will you provide some spare parts of the machines?
A4: Yes, of course.
Q5: What about the voltage of products? Can they be customized?
A5: Yes, of course. The voltage can be customized according to your equirement.
Q6: Which payment term can you accept?
A6: 30% T/T in advanced, 70% T/T against the B/L copy.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | 1 Year |
|---|---|
| Lubrication Style: | Lubricated |
| Cooling System: | Oil Cooling |
| Power Source: | Diesel Engine |
| Cylinder Position: | Angular |
| Structure Type: | Closed Type |
| Customization: |
Available
|
|
|---|
.webp)
What are the energy-saving technologies available for air compressors?
There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:
1. Variable Speed Drive (VSD) Compressors:
VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.
2. Energy-Efficient Motors:
The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.
3. Heat Recovery Systems:
Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.
4. Air Receiver Tanks:
Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.
5. System Control and Automation:
Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.
6. Leak Detection and Repair:
Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.
7. System Optimization and Maintenance:
Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.
By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.
.webp)
How are air compressors employed in the mining industry?
Air compressors play a crucial role in the mining industry, providing reliable and efficient power for various mining operations. Here are some common applications of air compressors in mining:
1. Exploration and Drilling:
Air compressors are used during exploration and drilling activities in the mining industry. Compressed air is used to power drilling rigs, pneumatic hammers, and other drilling equipment. The high-pressure air generated by the compressor helps in drilling boreholes, extracting core samples, and exploring potential mineral deposits.
2. Ventilation and Air Quality Control:
Air compressors are employed in underground mining to provide ventilation and control air quality. Compressed air is used to operate ventilation fans and air circulation systems, ensuring adequate airflow and removing harmful gases, dust, and fumes from the mining tunnels and work areas.
3. Material Conveyance:
In mining operations, air compressors are used for material conveyance. Pneumatic systems powered by air compressors are utilized to transport materials such as coal, ore, and other minerals. Compressed air is used to operate pneumatic conveyors, pumps, and material handling equipment, allowing for efficient and controlled movement of bulk materials.
4. Dust Suppression:
Air compressors are employed for dust suppression in mining areas. Compressed air is used to spray water or other suppressants to control dust generated during mining activities. This helps in maintaining a safe and healthy work environment, reducing the risks associated with dust inhalation and improving visibility.
5. Instrumentation and Control:
Air compressors are used for instrumentation and control purposes in mining operations. Compressed air is utilized to power pneumatic control systems, control valves, and actuators. These systems regulate the flow of fluids, control equipment movements, and ensure the proper functioning of various mining processes.
6. Explosive Applications:
In mining, air compressors are used for explosive applications. Compressed air is employed to power pneumatic tools used for rock fragmentation, such as rock drills and pneumatic breakers. The controlled power of compressed air enables safe and efficient rock breaking without the need for traditional explosives.
7. Maintenance and Repair:
Air compressors are essential for maintenance and repair activities in the mining industry. Compressed air is used for cleaning machinery, removing debris, and powering pneumatic tools for equipment maintenance and repair tasks. The versatility and portability of air compressors make them valuable assets in maintaining mining equipment.
It is important to note that different mining operations may have specific requirements and considerations when selecting and using air compressors. The size, capacity, and features of air compressors can vary based on the specific mining application and environmental conditions.
By utilizing air compressors effectively, the mining industry can benefit from increased productivity, improved safety, and efficient operation of various mining processes.
.webp)
How is air pressure measured in air compressors?
Air pressure in air compressors is typically measured using one of two common units: pounds per square inch (PSI) or bar. Here’s a brief explanation of how air pressure is measured in air compressors:
1. Pounds per Square Inch (PSI): PSI is the most widely used unit of pressure measurement in air compressors, especially in North America. It represents the force exerted by one pound of force over an area of one square inch. Air pressure gauges on air compressors often display pressure readings in PSI, allowing users to monitor and adjust the pressure accordingly.
2. Bar: Bar is another unit of pressure commonly used in air compressors, particularly in Europe and many other parts of the world. It is a metric unit of pressure equal to 100,000 pascals (Pa). Air compressors may have pressure gauges that display readings in bar, providing an alternative measurement option for users in those regions.
To measure air pressure in an air compressor, a pressure gauge is typically installed on the compressor’s outlet or receiver tank. The gauge is designed to measure the force exerted by the compressed air and display the reading in the specified unit, such as PSI or bar.
It’s important to note that the air pressure indicated on the gauge represents the pressure at a specific point in the air compressor system, typically at the outlet or tank. The actual pressure experienced at the point of use may vary due to factors such as pressure drop in the air lines or restrictions caused by fittings and tools.
When using an air compressor, it is essential to set the pressure to the appropriate level required for the specific application. Different tools and equipment have different pressure requirements, and exceeding the recommended pressure can lead to damage or unsafe operation. Most air compressors allow users to adjust the pressure output using a pressure regulator or similar control mechanism.
Regular monitoring of the air pressure in an air compressor is crucial to ensure optimal performance, efficiency, and safe operation. By understanding the units of measurement and using pressure gauges appropriately, users can maintain the desired air pressure levels in their air compressor systems.


editor by CX 2024-02-11
China Professional Focus Lubricated CHINAMFG Screw Air Compressor for Industry air compressor parts
Product Description
475cfm Focus lubricated CHINAMFG screw air compressor for industry
1.High Efficiency air end, flexible coupling, high quality rotor; Energy conservation, single stage compression, big air flow.
2.Easy operation and maintenance FOR drag design chassis, make service and maintenance much more easier.
3.Efficient Cooling system, insulating heat to protect host. Reliable Engine; 110kw Yuchai. Low Noise Level, protect workers hearing; Ambient temperature, range from 5-52ºC.
| Power | 160HP/140kw |
| Voltage | 220V/380V |
| Air flow capacity | 13.5m3/min |
| Weight | 2900kg |
| Cooing system | air cooling |
| Driving type | Direct |
| Wheels | 2/4 |
| Outlet diameter | G2 |
PACKAGE
Export standard wooden crate or film wrapping, as your request.
Focus 475 Cfm lubricated CHINAMFG screw air compressor for industry
COMPANY DESCRIPTION
Established in 1982, HangZhou Focus Machinery Co., Ltd. is the explorer and by far the biggest professional construction machinery manufacturer in HangZhou, China.
We mainly manufacture concrete batching plant, mobile concrete mixing plant, twin-shaft concrete mixer, small rotary concrete mixer, compulsory asphalt mixing plant, asphalt drum mixing plant, mobile asphalt plant, trailer concrete pump, concrete pump with mixer, dry CHINAMFG mixing plant, truck mounted concrete pump, concrete truck mixer, tower crane, construction hoist, cement bag splitter and pneumatic conveyor, etc.
Focus 475 Cfm lubricated CHINAMFG screw air compressor for industry
FOCUS_BUILT A BETTER WORLD
| After-sales Service: | Overseas Service Center with Sufficient Engineers |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Oil-less |
| Cooling System: | Air Cooling |
| Power Source: | Diesel Engine |
| Cylinder Position: | Vertical |
.webp)
How are air compressors employed in the petrochemical industry?
Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:
1. Instrumentation and Control Systems:
Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.
2. Pneumatic Tools and Equipment:
Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.
3. Process Air and Gas Supply:
Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.
4. Cooling and Ventilation:
Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.
5. Nitrogen Generation:
Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.
6. Instrument Air:
Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.
By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.
.webp)
How do you choose the right air compressor for woodworking?
Choosing the right air compressor for woodworking is essential to ensure efficient and effective operation of pneumatic tools and equipment. Here are some factors to consider when selecting an air compressor for woodworking:
1. Required Air Volume (CFM):
Determine the required air volume or cubic feet per minute (CFM) for your woodworking tools and equipment. Different tools have varying CFM requirements, so it is crucial to choose an air compressor that can deliver the required CFM to power your tools effectively. Make sure to consider the highest CFM requirement among the tools you’ll be using simultaneously.
2. Tank Size:
Consider the tank size of the air compressor. A larger tank allows for more stored air, which can be beneficial when using tools that require short bursts of high air volume. It helps maintain a consistent air supply and reduces the frequency of the compressor cycling on and off. However, if you have tools with continuous high CFM demands, a larger tank may not be as critical.
3. Maximum Pressure (PSI):
Check the maximum pressure (PSI) rating of the air compressor. Woodworking tools typically operate within a specific PSI range, so ensure that the compressor can provide the required pressure. It is advisable to choose an air compressor with a higher maximum PSI rating to accommodate any future tool upgrades or changes in your woodworking needs.
4. Noise Level:
Consider the noise level of the air compressor, especially if you’ll be using it in a residential or shared workspace. Some air compressors have noise-reducing features or are designed to operate quietly, making them more suitable for woodworking environments where noise control is important.
5. Portability:
Assess the portability requirements of your woodworking projects. If you need to move the air compressor frequently or work in different locations, a portable and lightweight compressor may be preferable. However, if the compressor will remain stationary in a workshop, a larger, stationary model might be more suitable.
6. Power Source:
Determine the power source available in your woodworking workspace. Air compressors can be powered by electricity or gasoline engines. If electricity is readily available, an electric compressor may be more convenient and cost-effective. Gasoline-powered compressors offer greater flexibility for remote or outdoor woodworking projects where electricity may not be accessible.
7. Quality and Reliability:
Choose an air compressor from a reputable manufacturer known for producing reliable and high-quality equipment. Read customer reviews and consider the warranty and after-sales support offered by the manufacturer to ensure long-term satisfaction and reliability.
8. Budget:
Consider your budget and balance it with the features and specifications required for your woodworking needs. While it’s important to invest in a reliable and suitable air compressor, there are options available at various price points to accommodate different budgets.
By considering these factors and evaluating your specific woodworking requirements, you can choose an air compressor that meets the demands of your tools, provides efficient performance, and enhances your woodworking experience.
.webp)
Can air compressors be used for automotive applications?
Yes, air compressors can be used for various automotive applications and are commonly found in automotive repair shops, garages, and even in some vehicles. Here are some automotive applications where air compressors are frequently utilized:
1. Tire Inflation: Air compressors are commonly used to inflate tires in automotive applications. They provide a convenient and efficient way to inflate tires to the recommended pressure, ensuring optimal tire performance, fuel efficiency, and safety.
2. Air Tools: Air compressors power a wide range of pneumatic tools used in automotive repair and maintenance. These tools include impact wrenches, ratchet wrenches, air hammers, pneumatic drills, and sanders. Air-powered tools are favored for their high torque and power-to-weight ratio, making them suitable for heavy-duty automotive tasks.
3. Spray Painting: Air compressors are commonly used in automotive painting applications. They power airbrushes and spray guns that are used to apply paint, primer, and clear coats. Air compressors provide the necessary air pressure to atomize the paint and deliver a smooth and even finish.
4. Brake System Maintenance: Air compressors play a crucial role in maintaining and diagnosing automotive brake systems. They are used to pressurize the brake lines, allowing for proper bleeding of the system and detection of leaks or faults.
5. Suspension Systems: Some automotive suspension systems, such as air suspensions, rely on air compressors to maintain the desired air pressure in the suspension components. The compressor inflates or deflates the suspension as needed to provide a comfortable ride and optimal handling.
6. Cleaning and Dusting: Air compressors are used for cleaning automotive parts, blowing away dust and debris, and drying surfaces. They provide a high-pressure stream of air that effectively cleans hard-to-reach areas.
7. Air Conditioning Systems: Air compressors are a key component in automotive air conditioning systems. They compress and circulate refrigerant, allowing the system to cool and dehumidify the air inside the vehicle.
When using air compressors for automotive applications, it’s important to consider the specific requirements of the task at hand. Ensure that the air compressor has the necessary pressure and capacity to meet the demands of the application. Additionally, use appropriate air hoses, fittings, and tools that are compatible with the compressor’s output.
Overall, air compressors are versatile and valuable tools in the automotive industry, providing efficient power sources for a wide range of applications, from tire inflation to powering pneumatic tools and supporting various automotive systems.


editor by CX 2023-12-08
China Professional 45kw 8bar Water Lubricated Oil-Free Screw Air Compressor small air compressor
Product Description
Product Description
Detailed Photos
Product Parameters
| Model | KAW-45A |
| Power(Kw) | 45Kw |
| Pressure(Bar) | 8Bar |
| Volume flow(m3/min) | 7.4m3/min |
| Air Outlet | 1 1/2” |
| Weight(kg) | 1390Kg |
| Dimension(mm) | 1800×1300×1750mm |
Certifications
Packaging & Shipping
Installation Instructions
Company Profile
ZheJiang Kingair Industrial Co., Ltd., is the core technology solution provider for compressed gas system solutions, with mature operation experience and excellent brand reputation in the 3 major areas : product system, core technology and solutions.
The company has strong comprehensive strength, the factory is located in Xihu (West Lake) Dis., ZheJiang , covers an area of 30000 square meters, has a strong equipment production capacity. In the course of 20 years of operation and development, we have always adhered to the enterprise spirit of
“professionalism, innovation, energy saving and service”, deeply implemented the strategic policy of environmental protection and low carbon, and realized the construction of high intelligent and efficient air pressure system industry chain.
Kingair focuses on R&D, production and trade, and produces air compressor products with stable overall performance, advanced control system, superior, gas environment, reasonable design, higher efficiency and longer service life.
Each product of the company has passed the IS09000 quality management system certification, European CE, ISO certification, etc., and has established a complete set of mature foreign trade operation system. The products are popular in more than 80 countries and regions in Asia, Europe,Africa and America.
FAQ
Q1. Is KINGAIR trading company or manufacturer ?
A: We are professional manufacturer of screw air compressor, more than 20 years experience.
Q2. How long is KINGAIR delivery time ?
A: KINGAIR standard delivery time is 15 working days after confirmed order.For the other non-standard requirements will be discussed case by case.
Q3. How about your after-sales service?
A: 1. Provide customers with installation and commissioning online instructions.
2. Well-trained engineers available to overseas service.
3. CHINAMFG agents and after service available arrange our engineers to help you training and installation.
Q4. What is the available voltage KINGAIR compressor?
A:KINGAIR available voltage include 380v/50hz/3p,400v/50hz/3p,415v/50hz/3p,220v/60hz/3p,440v/60hz/3p,And
KIGNAIR also supplies the required voltage.
Q5. Do you have any certificate ?
A: Yes, according to customer’s market need, we can offer CE certificate, ISO certificate, etc.
Q6. Do you offer OEM service ?
A: Yes, both OEM & ODM service can be accepted.
Q7. Can KINGAIR machines be run in high temperature environment?What is working temperature range?
A: Yes, KINGAIR machines would run in high temperature environment countries.Such as India, UAE,South Africa, Saudi Arabia, Iraq, Pakistan,etc.
| After-sales Service: | on Line Technical Support |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Cooling System: | Water Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Horizontal |
| Samples: |
US$ 18000/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
What is the impact of humidity on compressed air quality?
Humidity can have a significant impact on the quality of compressed air. Compressed air systems often draw in ambient air, which contains moisture in the form of water vapor. When this air is compressed, the moisture becomes concentrated, leading to potential issues in the compressed air. Here’s an overview of the impact of humidity on compressed air quality:
1. Corrosion:
High humidity in compressed air can contribute to corrosion within the compressed air system. The moisture in the air can react with metal surfaces, leading to rust and corrosion in pipes, tanks, valves, and other components. Corrosion not only weakens the structural integrity of the system but also introduces contaminants into the compressed air, compromising its quality and potentially damaging downstream equipment.
2. Contaminant Carryover:
Humidity in compressed air can cause carryover of contaminants. Water droplets formed due to condensation can carry particulates, oil, and other impurities present in the air. These contaminants can then be transported along with the compressed air, leading to fouling of filters, clogging of pipelines, and potential damage to pneumatic tools, machinery, and processes.
3. Decreased Efficiency of Pneumatic Systems:
Excessive moisture in compressed air can reduce the efficiency of pneumatic systems. Water droplets can obstruct or block the flow of air, leading to decreased performance of pneumatic tools and equipment. Moisture can also cause problems in control valves, actuators, and other pneumatic devices, affecting their responsiveness and accuracy.
4. Product Contamination:
In industries where compressed air comes into direct contact with products or processes, high humidity can result in product contamination. Moisture in compressed air can mix with sensitive products, leading to quality issues, spoilage, or even health hazards in industries such as food and beverage, pharmaceuticals, and electronics manufacturing.
5. Increased Maintenance Requirements:
Humidity in compressed air can increase the maintenance requirements of a compressed air system. Moisture can accumulate in filters, separators, and other air treatment components, necessitating frequent replacement or cleaning. Excessive moisture can also lead to the growth of bacteria, fungus, and mold within the system, requiring additional cleaning and maintenance efforts.
6. Adverse Effects on Instrumentation:
Humidity can adversely affect instrumentation and control systems that rely on compressed air. Moisture can disrupt the accuracy and reliability of pressure sensors, flow meters, and other pneumatic instruments, leading to incorrect measurements and control signals.
To mitigate the impact of humidity on compressed air quality, various air treatment equipment is employed, including air dryers, moisture separators, and filters. These devices help remove moisture from the compressed air, ensuring that the air supplied is dry and of high quality for the intended applications.
.webp)
What are the environmental considerations when using air compressors?
When using air compressors, there are several environmental considerations to keep in mind. Here’s an in-depth look at some of the key factors:
Energy Efficiency:
Energy efficiency is a crucial environmental consideration when using air compressors. Compressing air requires a significant amount of energy, and inefficient compressors can consume excessive power, leading to higher energy consumption and increased greenhouse gas emissions. It is important to choose energy-efficient air compressors that incorporate features such as Variable Speed Drive (VSD) technology and efficient motor design, as they can help minimize energy waste and reduce the carbon footprint.
Air Leakage:
Air leakage is a common issue in compressed air systems and can contribute to energy waste and environmental impact. Leaks in the system result in the continuous release of compressed air, requiring the compressor to work harder and consume more energy to maintain the desired pressure. Regular inspection and maintenance of the compressed air system to detect and repair leaks can help reduce air loss and improve overall energy efficiency.
Noise Pollution:
Air compressors can generate significant noise levels during operation, which can contribute to noise pollution. Prolonged exposure to high noise levels can have detrimental effects on human health and well-being and can also impact the surrounding environment and wildlife. It is important to consider noise reduction measures such as sound insulation, proper equipment placement, and using quieter compressor models to mitigate the impact of noise pollution.
Emissions:
While air compressors do not directly emit pollutants, the electricity or fuel used to power them can have an environmental impact. If the electricity is generated from fossil fuels, the associated emissions from power plants contribute to air pollution and greenhouse gas emissions. Choosing energy sources with lower emissions, such as renewable energy, can help reduce the environmental impact of operating air compressors.
Proper Waste Management:
Proper waste management is essential when using air compressors. This includes the appropriate disposal of compressor lubricants, filters, and other maintenance-related materials. It is important to follow local regulations and guidelines for waste disposal to prevent contamination of soil, water, or air and minimize the environmental impact.
Sustainable Practices:
Adopting sustainable practices can further reduce the environmental impact of using air compressors. This can include implementing preventive maintenance programs to optimize performance, reducing idle time, and promoting responsible use of compressed air by avoiding overpressurization and optimizing system design.
By considering these environmental factors and taking appropriate measures, it is possible to minimize the environmental impact associated with the use of air compressors. Choosing energy-efficient models, addressing air leaks, managing waste properly, and adopting sustainable practices can contribute to a more environmentally friendly operation.
.webp)
In which industries are air compressors widely used?
Air compressors find extensive usage across various industries due to their versatility and ability to generate compressed air. Here are some industries where air compressors are widely employed:
1. Manufacturing: Air compressors are essential in manufacturing processes for powering pneumatic tools and equipment. They are used for tasks such as operating assembly lines, powering robotic machinery, running paint sprayers, and driving pneumatic actuators.
2. Construction: Air compressors play a crucial role in the construction industry. They power pneumatic tools like jackhammers, nail guns, impact wrenches, and concrete breakers. Compressed air is also used for concrete spraying, sandblasting, and operating air-powered lifts and hoists.
3. Automotive: Air compressors are widely used in automotive manufacturing and repair. They power air tools used in auto body shops, tire inflation equipment, pneumatic lifts, and air-operated brake systems. Compressed air is also utilized in vehicle painting and drying processes.
4. Oil and Gas: The oil and gas industry extensively relies on air compressors for various applications. They are used for pneumatic drilling, powering pneumatic tools in refineries and petrochemical plants, operating pneumatic valves and actuators, and providing instrument air for control systems.
5. Food and Beverage: Air compressors are employed in the food and beverage industry for tasks such as packaging, bottling, and sealing. They power pneumatic conveying systems, control air pressure in food processing equipment, and provide clean compressed air for food handling and storage.
6. Pharmaceutical and Healthcare: Air compressors find application in pharmaceutical manufacturing and healthcare facilities. They are used for operating medical equipment, such as ventilators and dental tools. Compressed air is also utilized in pharmaceutical processes, including tablet coating, fluid bed drying, and aseptic packaging.
7. Aerospace: The aerospace industry relies on air compressors for various applications, including aircraft maintenance and assembly. They power pneumatic tools for aircraft repair, provide compressed air for cleaning and pressurizing systems, and support ground operations, such as tire inflation and aircraft de-icing.
8. Mining: Air compressors are extensively used in the mining industry. They power pneumatic tools for drilling, rock blasting, and excavation. Compressed air is also utilized for ventilation, conveying materials, and operating underground equipment.
9. Energy and Utilities: Air compressors play a vital role in the energy and utilities sector. They are used in power generation plants for pneumatic control systems, instrument air, and operating pneumatic valves. Compressed air is also employed for cleaning and maintenance purposes.
These are just a few examples of the industries where air compressors are widely utilized. The versatility and reliability of air compressors make them indispensable in numerous applications across diverse sectors.


editor by CX 2023-11-13