Product Description
| Model Name | Displ. | Capacity | Power | COP | Current | Noise | Capacitor | Oil | R22 Max | Wt. | Sizes Refer to Table 10 |
| (POE) | |||||||||||
| (cm3/rev) | (±5%W) | (±5% W) | (±5%) | (A) | ±3dB(A) | μF-V | (ml) | (kg) | (kg) | ||
| PH108X1CY-8BGD2 | 10.8 | 1820 | 595 | 3.06 | 2.7 | 59 | 25/370 | 350 | 0.7 | 10.7 | No.1 |
| PH120X1CY-8BGD2 | 12.2 | 2090 | 675 | 3.1 | 3.1 | 59 | 25/370 | 350 | 0.7 | 10.7 | No.1 |
| PH135X1C-8DZD2 | 13.6 | 2280 | 750 | 3.04 | 3.4 | 59 | 25/370 | 400 | 0.85 | 12 | No.6 |
| PH150X1C-8DZD2 | 14.8 | 2500 | 820 | 3.05 | 3.8 | 60 | 25/370 | 400 | 0.85 | 12 | No.6 |
| PH155X1C-8DZD2 | 15.4 | 2600 | 850 | 3.06 | 4 | 59 | 25/370 | 400 | 0.85 | 12 | No.6 |
| PH160X1C-8DZD2 | 16.1 | 2720 | 890 | 3.06 | 4.1 | 59 | 25/370 | 400 | 0.85 | 12 | No.6 |
| PH165X1C-8DZD2 | 16.5 | 2810 | 920 | 3.05 | 4.2 | 59 | 25/370 | 400 | 0.85 | 12 | No.6 |
| PH170X1C-8DZD2 | 17.1 | 2920 | 960 | 3.04 | 4.5 | 59 | 25/370 | 400 | 0.85 | 12 | No.6 |
| PH180X1C-8DZD2 | 17.8 | 3050 | 1571 | 2.98 | 4.8 | 59 | 25/370 | 400 | 0.85 | 12 | No.6 |
| PH195X2C-8FTC | 19.3 | 3330 | 1080 | 3.08 | 5 | 61 | 25/370 | 480 | 1.1 | 15.1 | No.16 |
| PH200X2C-8FTC | 20 | 3470 | 1135 | 3.06 | 5.2 | 61 | 25/370 | 480 | 1.1 | 15.1 | No.16 |
| PH215X2C-8FTC | 21.6 | 3750 | 1210 | 3.1 | 5.6 | 61 | 35/370 | 480 | 1.2 | 15.8 | No.16 |
| PH225X2C-8FTC | 22.4 | 3870 | 1250 | 3.1 | 5.7 | 61 | 35/370 | 480 | 1.2 | 15.8 | No.16 |
| PH230X2C-8FTC | 23.1 | 3990 | 1310 | 3.05 | 6 | 61 | 35/370 | 480 | 1.2 | 15.8 | No.16 |
| PH240X2C-8FTC | 23.9 | 4140 | 1355 | 3.06 | 6.2 | 61 | 35/370 | 480 | 1.2 | 15.8 | No.16 |
| PH260X2C-8FTC1 | 26.2 | 4600 | 1510 | 3.05 | 7.3 | 63 | 35/370 | 520 | 1.3 | 16.3 | No.21 |
| PH280X2C-8FTC1 | 28 | 4900 | 1570 | 3.12 | 7.5 | 64 | 35/370 | 520 | 1.3 | 17.1 | No.21 |
| PH290X2C-8FTC1 | 29 | 5110 | 1650 | 3.1 | 8 | 64 | 35/370 | 520 | 1.3 | 17.1 | No.21 |
| PH295X2C-8FTC1 | 29.4 | 5180 | 1670 | 3.1 | 8 | 64 | 35/370 | 520 | 1.3 | 17.1 | No.21 |
| PH295X2CS-8KUC1 | 29.4 | 5200 | 1700 | 3.06 | 8 | 65 | 35/370 | 750 | 1.8 | 17.7 | No.22 |
| PH310X2CS-8KUC1 | 30.8 | 5410 | 1815 | 2.98 | 9.5 | 64 | 40/370 | 750 | 1.8 | 17.7 | No.22 |
| PH330X2CS-8KUC3 | 32.8 | 5720 | 1920 | 2.98 | 10 | 64 | 40/370 | 750 | 1.8 | 17.7 | No.22 |
| PH340X2CS-8KUC1 | 33.8 | 5860 | 1890 | 3.1 | 9 | 66 | 45/400 | 750 | 1.8 | 18.1 | No.23 |
| PH340X3C-8KUC1 | 34.2 | 5950 | 1945 | 3.06 | 9.1 | 66 | 50/400 | 750 | 1.8 | 20.6 | No.25 |
| PH360X3C-8KUC1 | 35.7 | 6220 | 2040 | 3.05 | 9.6 | 66 | 50/400 | 750 | 1.8 | 20.6 | No.25 |
| PH400X3C-8KUC1 | 40.2 | 6920 | 2245 | 3.08 | 10.5 | 66 | 50/400 | 950 | 2.1 | 23.3 | No.27 |
| PH420X3C-8KUC1 | 42 | 7400 | 2370 | 3.12 | 11.1 | 66 | 50/400 | 950 | 2.1 | 23.3 | No.28 |
| PH440X3C-8KUC1 | 43.5 | 7650 | 2510 | 3.05 | 12.3 | 66 | 50/400 | 950 | 2.1 | 23.3 | No.28 |
| PH460X3C-8KUC1 | 45.9 | 8060 | 2600 | 3.1 | 12.5 | 68 | 55/400 | 1100 | 2.45 | 25.2 | No.29 |
| PH480X3C-8KUC1 | 47.9 | 8460 | 2730 | 3.1 | 13 | 67 | 55/400 | 1100 | 2.45 | 25.2 | No.29 |
Archean refrigeration has been focusing on the refrigeration industry for more than 10 years. The compressors are sold all over the world and have been well received. The company has accumulated strong experience in the compressor market, rich technical support, and a satisfactory one-stop procurement solution. You can rest assured You don’t need to worry about this series, from placing an order to receiving the goods. We provide a complete solution to serve customers well, which is our purpose of hospitality.
/* October 22, 2571 15:47:17 */(()=>{function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
.webp)
What are the energy-saving technologies available for air compressors?
There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:
1. Variable Speed Drive (VSD) Compressors:
VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.
2. Energy-Efficient Motors:
The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.
3. Heat Recovery Systems:
Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.
4. Air Receiver Tanks:
Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.
5. System Control and Automation:
Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.
6. Leak Detection and Repair:
Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.
7. System Optimization and Maintenance:
Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.
By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.
.webp)
What safety precautions should be taken when working with compressed air?
Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:
1. Personal Protective Equipment (PPE):
Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.
2. Compressed Air Storage:
Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.
3. Pressure Regulation:
Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.
4. Air Hose Inspection:
Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.
5. Air Blowguns:
Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.
6. Air Tool Safety:
Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.
7. Air Compressor Maintenance:
Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.
8. Training and Education:
Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.
9. Lockout/Tagout:
When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.
10. Proper Ventilation:
Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.
By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.
.webp)
What is the difference between a piston and rotary screw compressor?
Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:
1. Operating Principle:
- Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
- Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.
2. Compression Method:
- Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
- Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.
3. Efficiency:
- Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
- Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.
4. Noise Level:
- Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
- Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.
5. Maintenance:
- Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
- Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.
6. Size and Portability:
- Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
- Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.
These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.


editor by lmc 2025-02-24
China best CHINAMFG Caj9510z Piston Refrigerator Refrigeration Compressor R22 CHINAMFG Air Compressor Compressor air compressor for sale
Product Description
| A variety of brands on sale |
|
|
| A total of 19 brands are on sale | ||
| Different types of compressors | ||
Division I engaged in the refrigeration industry for more than 13 years, the production of heat pump water heaters, seafood machine, refrigeration and refrigeration equipment. Have a professional sales team and after-sales team.
We sell various brands of compressors, such as Copeland, Mitsubishi, etc. Our quality is more guaranteed, we have more perfect services, and provide one-stop service.
If you need compressors and refrigeration equipment, you are very welcome to contact me at any time, I am always looking CHINAMFG to your visit
At present, closed piston compressors are mostly used in cold storage and refrigeration markets (commercial refrigeration and air conditioners are also useful, but they are relatively less used now)
advantage:
1. Simple structure and mature manufacturing technology;
2. The requirements for processing materials and processing technology are relatively low;
3. It is easy to achieve high compression ratio, so it has strong adaptability and can be used in a very wide pressure range;
4. The device system is relatively simple and can be applied to a wide range of pressure and cooling capacity requirements.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Provide Online Services |
|---|---|
| Warranty: | Provide Online Services |
| Lubrication Style: | Lubricated |
| Cooling System: | Other |
| Cylinder Arrangement: | Other |
| Cylinder Position: | Other |
| Samples: |
US$ 1000/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
Are there special considerations for air compressor installations in remote areas?
Yes, there are several special considerations to take into account when installing air compressors in remote areas. These areas often lack access to infrastructure and services readily available in urban or well-developed regions. Here are some key considerations:
1. Power Source:
Remote areas may have limited or unreliable access to electricity. It is crucial to assess the availability and reliability of the power source for operating the air compressor. In some cases, alternative power sources such as diesel generators or solar panels may need to be considered to ensure a consistent and uninterrupted power supply.
2. Environmental Conditions:
Remote areas can present harsh environmental conditions that can impact the performance and durability of air compressors. Extreme temperatures, high humidity, dust, and corrosive environments may require the selection of air compressors specifically designed to withstand these conditions. Adequate protection, insulation, and ventilation must be considered to prevent damage and ensure optimal operation.
3. Accessibility and Transport:
Transporting air compressors to remote areas may pose logistical challenges. The size, weight, and portability of the equipment should be evaluated to ensure it can be transported efficiently to the installation site. Additionally, the availability of suitable transportation infrastructure, such as roads or air transportation, needs to be considered to facilitate the delivery and installation process.
4. Maintenance and Service:
In remote areas, access to maintenance and service providers may be limited. It is important to consider the availability of trained technicians and spare parts for the specific air compressor model. Adequate planning for routine maintenance, repairs, and troubleshooting should be in place to minimize downtime and ensure the longevity of the equipment.
5. Fuel and Lubricants:
For air compressors that require fuel or lubricants, ensuring a consistent and reliable supply can be challenging in remote areas. It is necessary to assess the availability and accessibility of fuel or lubricant sources and plan for their storage and replenishment. In some cases, alternative or renewable fuel options may need to be considered.
6. Noise and Environmental Impact:
Remote areas are often characterized by their natural beauty and tranquility. Minimizing noise levels and environmental impact should be a consideration when installing air compressors. Selecting models with low noise emissions and implementing appropriate noise reduction measures can help mitigate disturbances to the surrounding environment and wildlife.
7. Communication and Remote Monitoring:
Given the remote location, establishing reliable communication channels and remote monitoring capabilities can be essential for effective operation and maintenance. Remote monitoring systems can provide real-time data on the performance and status of the air compressor, enabling proactive maintenance and troubleshooting.
By addressing these special considerations, air compressor installations in remote areas can be optimized for reliable operation, efficiency, and longevity.
.webp)
How are air compressors utilized in pneumatic tools?
Air compressors play a crucial role in powering and operating pneumatic tools. Here’s a detailed explanation of how air compressors are utilized in pneumatic tools:
Power Source:
Pneumatic tools rely on compressed air as their power source. The air compressor generates and stores compressed air, which is then delivered to the pneumatic tool through a hose or piping system. The compressed air provides the force necessary for the tool to perform various tasks.
Air Pressure Regulation:
Air compressors are equipped with pressure regulation systems to control the output pressure of the compressed air. Different pneumatic tools require different air pressure levels to operate optimally. The air compressor’s pressure regulator allows users to adjust the output pressure according to the specific requirements of the pneumatic tool being used.
Air Volume and Flow:
Air compressors provide a continuous supply of compressed air, ensuring a consistent air volume and flow rate for pneumatic tools. The air volume is typically measured in cubic feet per minute (CFM) and determines the tool’s performance capabilities. Higher CFM ratings indicate that the pneumatic tool can deliver more power and operate at a faster rate.
Tool Actuation:
Pneumatic tools utilize compressed air to actuate their mechanical components. For example, an air-powered impact wrench uses compressed air to drive the tool’s internal hammer mechanism, generating high torque for fastening or loosening bolts and nuts. Similarly, air-powered drills, sanders, nail guns, and spray guns rely on compressed air to power their respective operations.
Versatility:
One of the significant advantages of pneumatic tools is their versatility, and air compressors enable this flexibility. A single air compressor can power a wide range of pneumatic tools, eliminating the need for separate power sources for each tool. This makes pneumatic tools a popular choice in various industries, such as automotive, construction, manufacturing, and woodworking.
Portability:
Air compressors come in different sizes and configurations, offering varying degrees of portability. Smaller portable air compressors are commonly used in applications where mobility is essential, such as construction sites or remote locations. The portability of air compressors allows pneumatic tools to be used in various work environments without the constraints of being tethered to a fixed power source.
Overall, air compressors are integral to the functionality and operation of pneumatic tools. They provide the necessary power, air pressure regulation, and continuous airflow required for pneumatic tools to perform a wide range of tasks efficiently and effectively.
.webp)
How is air pressure measured in air compressors?
Air pressure in air compressors is typically measured using one of two common units: pounds per square inch (PSI) or bar. Here’s a brief explanation of how air pressure is measured in air compressors:
1. Pounds per Square Inch (PSI): PSI is the most widely used unit of pressure measurement in air compressors, especially in North America. It represents the force exerted by one pound of force over an area of one square inch. Air pressure gauges on air compressors often display pressure readings in PSI, allowing users to monitor and adjust the pressure accordingly.
2. Bar: Bar is another unit of pressure commonly used in air compressors, particularly in Europe and many other parts of the world. It is a metric unit of pressure equal to 100,000 pascals (Pa). Air compressors may have pressure gauges that display readings in bar, providing an alternative measurement option for users in those regions.
To measure air pressure in an air compressor, a pressure gauge is typically installed on the compressor’s outlet or receiver tank. The gauge is designed to measure the force exerted by the compressed air and display the reading in the specified unit, such as PSI or bar.
It’s important to note that the air pressure indicated on the gauge represents the pressure at a specific point in the air compressor system, typically at the outlet or tank. The actual pressure experienced at the point of use may vary due to factors such as pressure drop in the air lines or restrictions caused by fittings and tools.
When using an air compressor, it is essential to set the pressure to the appropriate level required for the specific application. Different tools and equipment have different pressure requirements, and exceeding the recommended pressure can lead to damage or unsafe operation. Most air compressors allow users to adjust the pressure output using a pressure regulator or similar control mechanism.
Regular monitoring of the air pressure in an air compressor is crucial to ensure optimal performance, efficiency, and safe operation. By understanding the units of measurement and using pressure gauges appropriately, users can maintain the desired air pressure levels in their air compressor systems.


editor by CX 2024-02-10
China Standard Compessor Air Cooling Scroll Compressor Refrigeration Air Compressor for Cold Storage Room Compressor air compressor portable
Product Description
Advantages for our condensing unit
1. The accessories for the unit include liquid receiver, pressure gage, pressure controller, sight glass, filter junction box, etc.
2. The copper tube of air cooled Condensing units get through the 2.6Mpa pressure test, meet the request of normal work.
3.Every part of units is best in corrosion protection.
4. Air cooled condensing unit refrigerating capacity ranks from 0.2KW to 29KW. evaporating temperature:-45ºC-+15°C, run steady under the ambient temperature +43ºC.
5. Proper structure, accurate and reliable operating system for the air cooled condensing unit. 6. Use the high efficiency and large air volume axial fan, with low noise and energy saving.
ApplicationHotels, hospitals, blood banks, poultry slaughter and processing, CHINAMFG and processing, mushroom cultivation,
agricultural product processing, dairy production, pharmaceutical processing and logistics, beverage production and processing,
beer production and cooling, large-scale logistics storage, chemical product cooling, leather manufacturing, injection molding,
machine cooling, steel cooling, ommunication equipment, ship manufacturing and more.
| Suitable Temperature for Various Products | ||||||||
| Temperature | Condensing Unit Type | Suitable Products | ||||||
| -5°C ~ +5°C | Single stage piston/scroll/ screw compressor condensing unit |
Vegetables, Fruit, Drink, Beer, Medicines, Vaccine… |
||||||
| -15°C ~ -25°C | Single stage piston/scroll/ screw compressor condensing unit |
Meat, Fish, Medicines, Seafoods, Ice Cream… |
||||||
| -30°C ~ -40°C | 2-stage piston/screw compressor condensing unit |
Meat, Fish, Blood… | ||||||
| -45°C ~ -70°C | Cascade condensing unit | Tuna, Vaccine… | ||||||
Product Specifications
| 1 | Product name | Stainless Steel Brazed Plate Heat Exchanger | |||
| 2 | Refrigerant | R22,R407etc. | |||
| 3 | Voltage | AC220v/380v/customized ,50Hz/60Hz | |||
| 4 | cold room temperature | -25~45ºC | |||
| 5 | Range of evaporating temperature | -30~50ºC | |||
| 6 | Warranty | 1 Year | |||
| 7 | Composition | Compressor, crankcase heater, oil pressure safety switch, air-cooled condenser, receiving tank, drier-filter, meter panel, pressure controller, refrigeration oil, protection gas, double stage compressor with intermediate cooler |
|||
1. Why do we insist original new compressor?
Only original brand new compressor can have the best quality & high efficiency. So you save money on electric bill and maintenance cost.
2. Why same HP compressors have big price difference?
Even same horse power compressor condensing unit, the compressor have different designs, so the cooling capacities are different. Also their condensers are different. So cooling capacity bigger, price higher.
3. Can refrigeration units be customized?
Yes. We have experienced technicians and professional team can help customization. But we have many models for you to choose, better choose them because the delivery time is much shorter.
4. How many kinds of compressors?
Semi-hermetic(ECOLINE series),Two stages semi-hermetic, Semi-hermetic screw compressor, Hermetic screw compressor.
| After-sales Service: | 1 Year |
|---|---|
| Warranty: | 3-5 Year |
| Principle: | Mixed-Flow Compressor |
| Samples: |
US$ 200/Piece
1 Piece(Min.Order) | Order Sample |
|---|
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
| Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
How does variable speed drive technology improve air compressor efficiency?
Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:
1. Matching Air Demand:
Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.
2. Reduced Unloaded Running Time:
Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.
3. Soft Starting:
Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.
4. Energy Savings at Partial Load:
In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.
5. Elimination of On/Off Cycling:
Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.
6. Enhanced System Control:
VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.
By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.
.webp)
What is the impact of altitude on air compressor performance?
The altitude at which an air compressor operates can have a significant impact on its performance. Here are the key factors affected by altitude:
1. Decreased Air Density:
As altitude increases, the air density decreases. This means there is less oxygen available per unit volume of air. Since air compressors rely on the intake of atmospheric air for compression, the reduced air density at higher altitudes can lead to a decrease in compressor performance.
2. Reduced Airflow:
The decrease in air density at higher altitudes results in reduced airflow. This can affect the cooling capacity of the compressor, as lower airflow hampers the dissipation of heat generated during compression. Inadequate cooling can lead to increased operating temperatures and potential overheating of the compressor.
3. Decreased Power Output:
Lower air density at higher altitudes also affects the power output of the compressor. The reduced oxygen content in the air can result in incomplete combustion, leading to decreased power generation. As a result, the compressor may deliver lower airflow and pressure than its rated capacity.
4. Extended Compression Cycle:
At higher altitudes, the air compressor needs to work harder to compress the thinner air. This can lead to an extended compression cycle, as the compressor may require more time to reach the desired pressure levels. The longer compression cycle can affect the overall efficiency and productivity of the compressor.
5. Pressure Adjustments:
When operating an air compressor at higher altitudes, it may be necessary to adjust the pressure settings. As the ambient air pressure decreases with altitude, the compressor’s pressure gauge may need to be recalibrated to maintain the desired pressure output. Failing to make these adjustments can result in underinflated tires, improper tool performance, or other issues.
6. Compressor Design:
Some air compressors are specifically designed to handle higher altitudes. These models may incorporate features such as larger intake filters, more robust cooling systems, and adjusted compression ratios to compensate for the reduced air density and maintain optimal performance.
7. Maintenance Considerations:
Operating an air compressor at higher altitudes may require additional maintenance and monitoring. It is important to regularly check and clean the intake filters to ensure proper airflow. Monitoring the compressor’s operating temperature and making any necessary adjustments or repairs is also crucial to prevent overheating and maintain efficient performance.
When using an air compressor at higher altitudes, it is advisable to consult the manufacturer’s guidelines and recommendations specific to altitude operations. Following these guidelines and considering the impact of altitude on air compressor performance will help ensure safe and efficient operation.
.webp)
What is the role of air compressor tanks?
Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:
1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.
2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.
3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.
4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.
5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.
6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.
Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.


editor by CX 2023-12-13
China best Refrigeration Cold Room CHINAMFG Scroll Compresso Zw188hap-Tfm-522 Air Condition Split Type Compressor manufacturer
Product Description
Copeland Reciprocating Compressor Description
Copeland scoll compressors are dependable, cost-effective and versatile. A wide spectrum of operating ranges and hundreds of available models make these compressors an optimal selection for every refrigeration need.
Copeland Hermetic compressors have a compact design that is perfect for space constrained systems. These models are optimized for very low temperature and high duty cycles, as well as approved for use with R-22, R-404A/507, and R-134A refrigerants for virtually any application.
Key Features
Copeland scoll reciprocating compressors provide solutions to systems requiring a wide range of evaporating capability.
Optimized for freezers, vending machines, display cases, reach-ins, ice machines, and more.
Designed for low temperature refrigeration applications and addresses future challenges of refrigeration.
Provides unmatched benefits for extended medium temperature refrigeration applications.
designed for medium and high temperature refrigeration applications for a variety of industries.
Xihu (West Lake) Dis.r Technologies is a global supplier and marketer of CHINAMFG maintenance and compressor solutions for commercial and residential air conditioning,heating,ventilation and refrigeration field, manufacturing and other industrial applications.
Incorporated in 2571,our innovative products have been used by facilities and plant maintenance personnel CHINAMFG for the maintenance of CHINAMFG systems,and producion of AC and refrigerating equipment.Our products include CHINAMFG maintenance machines,refigeration equipment and compressors.
Core Markets Served:
Commercial/Residential/Maritime/Utility HVAC
Air Conditioning,Refrigerator,Coldroom,Heat Pump Manufacturing
Refrigeration Parts Wholesale and Retail
Certification:
Packing and Delivery
FAQ
1. How long have you been in this field and where is your company?
We have been in this field for years and we are located in HangZhou, the Canton Fair host city, and the capital city of ZheJiang Province, near to HangZhou, Hong Kong, very convenient for trading and shipping.
2. What are your main catagories?
– Hermetic Compressor (scroll, rotary, reciprocating)
– Semi hermetic compressor (screw)
– CHINAMFG maintenance supplies
– Refrigeration equipment and parts
3.Can you offer us quality product at the best price?
Of course, Quality is our culture; we always take good care of our clients interest if both are sincere to establish good relationship.
4.What is the term of payment?
T/T, L/C,Western Union; Trade Assurance online.
5.How about the MOQ?
1 unit acceptable.
6. Cooperative Partners?
Gree, Landa, Media, GMCC, LG, Panasonic,Copeland, Maneurop, Performer, Bitzer, Daikin, Hitachi,Highly, Mitsubishi, Secop, Embraco,Chigo, Haier, Sanyo, Wanbao, Sanhua,etc…
Contact Us
HangZhou Xihu (West Lake) Dis.r Technologies Co.,Ltd.
| After-sales Service: | Video Technical Support, Online Support |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What are the differences between stationary and portable air compressors?
Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:
1. Mobility:
The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.
2. Power Source:
Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.
3. Tank Capacity:
Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.
4. Performance and Output:
The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.
5. Noise Level:
Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.
6. Price and Cost:
Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.
When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.
.webp)
Can air compressors be used for medical and dental applications?
Yes, air compressors can be used for various medical and dental applications. Compressed air is a reliable and versatile utility in healthcare settings, providing power for numerous devices and procedures. Here are some common applications of air compressors in medical and dental fields:
1. Dental Tools:
Air compressors power a wide range of dental tools and equipment, such as dental handpieces, air syringes, air scalers, and air abrasion devices. These tools rely on compressed air to generate the necessary force and airflow for effective dental procedures.
2. Medical Devices:
Compressed air is used in various medical devices and equipment. For example, ventilators and anesthesia machines utilize compressed air to deliver oxygen and other gases to patients. Nebulizers, used for respiratory treatments, also rely on compressed air to convert liquid medications into a fine mist for inhalation.
3. Laboratory Applications:
Air compressors are used in medical and dental laboratories for various purposes. They power laboratory instruments, such as air-driven centrifuges and sample preparation equipment. Compressed air is also used for pneumatic controls and automation systems in lab equipment.
4. Surgical Tools:
In surgical settings, compressed air is employed to power specialized surgical tools. High-speed air-driven surgical drills, saws, and bone-cutting instruments are commonly used in orthopedic and maxillofacial procedures. Compressed air ensures precise control and efficiency during surgical interventions.
5. Sterilization and Autoclaves:
Compressed air is essential for operating sterilization equipment and autoclaves. Autoclaves use steam generated by compressed air to sterilize medical instruments, equipment, and supplies. The pressurized steam provides effective disinfection and ensures compliance with rigorous hygiene standards.
6. Dental Air Compressors:
Specialized dental air compressors are designed specifically for dental applications. These compressors have features such as moisture separators, filters, and noise reduction mechanisms to meet the specific requirements of dental practices.
7. Air Quality Standards:
In medical and dental applications, maintaining air quality is crucial. Compressed air used in healthcare settings must meet specific purity standards. This often requires the use of air treatment systems, such as filters, dryers, and condensate management, to ensure the removal of contaminants and moisture.
8. Compliance and Regulations:
Medical and dental facilities must comply with applicable regulations and guidelines regarding the use of compressed air. These regulations may include requirements for air quality, maintenance and testing procedures, and documentation of system performance.
It is important to note that medical and dental applications have specific requirements and standards. Therefore, it is essential to choose air compressors and associated equipment that meet the necessary specifications and comply with industry regulations.
.webp)
What are the key components of an air compressor system?
An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:
1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.
2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.
3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.
4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.
6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.
7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.
8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.
9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.
10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.
These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.


editor by CX 2023-11-20
China factory CHINAMFG Refrigeration Scroll Compressor for Air Condition (NL9CNX) with Good quality
Product Description
Product Description
220-240V 50Hz R404a NL9CNX Air Conditioner Compressor CHINAMFG series
1. CHINAMFG compressor SC series, model number NL9CNX
2. Refrigerant use R404A/R507,
3.220v-240v 5Hz
4. LBP/MBP compressor
5. Description of the compressor model:
SC — Design Code
18 —- Rated displacement capacity cm3/rev
CL—– R404A/R507 LBP
Product Parameters
| Model | Code | Voltage | Refrigerant | |
| NL7CLX | 105F3710 | 220-240V/50HZ | R404A | |
| NL8.4CLX | 105F3800 | 220-240V/50HZ | R404A | |
| FR6CL | 103U2670 | 220-240V/50HZ | R404A | |
| FR8.5CLX | 103U2890 | 220-240V/50HZ | R404A | |
| NF5.5CLX | 105F1621 | 115V/60HZ | R404A | |
| NF7CLX | 105F3720 | 115V/60HZ | R404A | |
| TL4.5CLX | 102U2111 | 220-240V/50HZ | R404A | |
| TL4CLX | 102U2071 | 220-240V/50HZ | R404A | |
| TF4CLX | 102U2102 | 115-127V/60HZ | R404A | |
| FR6G | 103G6660 | 220-240V/50HZ | R134A | |
| FR7.5G | 103G6680 | 220-240V/50HZ | R134A | |
| FR8.5G | 103G6780 | 220-240V/50HZ | R134A | |
| FR10G | 103G6890 | 220-240V/50HZ | R134A | |
| FR11G | 103G6980 | 220-240V/50HZ | R134A | |
| NL6.1MF | 105G6660 | 220-240V/50-60HZ | R134A | |
| NL8.4MF | 105G6879 | 220-240V/50-60HZ | R134A | |
| NL10MF | 105G6885 | 220-240V/50-60HZ | R134A | |
| NL11MF | 105G6151 | 220-240V/50-60HZ | R134A | |
| NL10FT | 105G6829 | 220-240V/50HZ | R134A | |
| FR7GH | 103G6683 | 220-240V/50HZ | R134A | |
| FF6GK | 103G5680 | 115V/60HZ | R134A | |
| FF7.5GK | 103G5780 | 115V/60HZ | R134A | |
| FF8.5GX | 103G5880 | 115V/60HZ | R134A | |
| FF10GX | 103G5980 | 115V/60HZ | R134A | |
| NF5.5FX | 105G5623 | 115-127V/60HZ | R134A | |
| NF6.1FX.2 | 105G5631 | 115-127V/60HZ | R134A | |
| NF7.3FX.2 | 105G5722 | 115-127V/60HZ | R134A | |
| NF8.4FX.2 | 105G5631 | 115-127V/60HZ | R134A | |
| NF11FX | 105G5947 | 115-127V/60HZ | R134A | |
| TL5G | 102G4550 | 220-240V/50HZ | R134A | |
| TL4G | 102G4452 | 220-240V/50HZ | R134A | |
| TL3G | 102G4350 | 220-240V/50HZ | R134A | |
| TL4GH | 102G4455 | 220-240V/50-60HZ | R134A | |
| NL7CNX | 105H6756 | 220-240V/50HZ | R290 | |
| NL9CNX | 105H6856 | 220-240V/50HZ | R290 | |
| TLSCNK | 102H4590 | 220-240V/50HZ | R290 | |
| SC10C | 104L2516 | 220-240V 50Hz | R22 | |
| SC12C | 104L2674 | 220-240V 50Hz | R22 | |
| SC15CM | 104L2848 | 220-240V 50Hz | R22 | |
| SC18CM | 104L2120 | 220-240V 50Hz | R22 | |
| SC10D | 104L2529 | 220-240V 50Hz | R22 | |
| SC12D | 104L2694 | 220-240V 50Hz | R22 | |
| SC15D | 104L2859 | 220-240V 50Hz | R22 | |
| SC10G | 104G8000 | 220-240V 50/60Hz | R134a | |
| SC12G | 104G8240 | 220-240V 50Hz | R134a | |
| SC15G | 104G8520 | 220-240V 50Hz | R134a | |
| SC18G | 104G8820 | 220-240V 50Hz | R134a | |
| SC21G | 104G8140 | 220-240V 50Hz | R134a | |
| SC10CL | 104L2523 | 220-240V 50Hz | R404a | |
| SC10MLX | 104L2533 | 220-240V 50/60Hz | R404a | |
| SC12CL | 104L2623 | 220-240V 50Hz | R404a | |
| SC15CL | 104L2853 | 220-240V 50Hz | R404a | |
| SC18CL | 104L2123 | 220-240V 50Hz | R404a | |
| SC21CL | 104L2322 | 220-240V 50Hz | R404a | |
Detailed Photos
Q&A
Q&A:
1. What is the packaging and shipping method?
By Sea: Export wooden package,with refrigerant oil .
By Air: Full-sealed wooden package, without refrigerant oil.
2. What is your main compressor series (classification)?
– B(itzer compressors
– Scroll compressors: CR,VR, ZB ,ZR, Z(F,ZP SERIES
– Semi-hermetic compressors: DL,D2,D4,D6,D8 SERIES
– Performer compressors: SM, SZ, SH SERIES
– Commercial compressors: FR, SC SERIES
– Maneurop piston compressors:MT, MTZ, NTZ, MPZ SERIES
– Secop compressor, Carrier(Carlyle) compressor
– Hitachi compressor, CHINAMFG compressor
– Tecumseh compressor, LG compressor, CHINAMFG compressor
– Toshiba compressor, CHINAMFG compressor, Embraci Aspera compressor
– Also B)itzer, Carel, Dixell original valves, controls and selected parts
– TE, TDE, TGE, PHT SERIES TERMOSTATIC EXPANSION VALVES
– ETS SERIES EXPANSION VAVLES,
– EVR SERIES ECPANSION VAVLES AND
– KP1,KP5,KP15 SERIES PRESSURE CONTROLS
– DCL DML LIQUID LINE FILTER DRIERS
3.What is the term of payment?
T/T, Western Union
4.Which port does you ship from?
HangZhou.
5. How long is the warranty period for this product?
1 year
After Sales Service
Pre-sales: We provide assistance to our customers, provide valid information according to the requirements of our guests, answer questions, leave a professional impression, and lay the foundation for future sales.
Selling: let our customers know more about our products, and enthusiastically answering questions for customers and providing customers with a pleasant buying experience.
After-sales: After the products are sold, the professionals provide training services, check and maintain the products regularly, if there is problems for the quality,Will solve it for customers in time.
| After-sales Service: | Online Support |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Cylinder Arrangement: | Parallel Arrangement |
| Cylinder Position: | Vertical |
| Customization: |
Available
|
|
|---|
.webp)
What are the advantages of using rotary vane compressors?
Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:
1. Compact and Lightweight:
Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.
2. High Efficiency:
Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.
3. Quiet Operation:
Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.
4. Oil Lubrication:
Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.
5. Versatile Applications:
Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.
6. Easy Maintenance:
Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.
These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.
.webp)
Are there differences between single-stage and two-stage air compressors?
Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:
Compression Stages:
The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.
Compression Process:
In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.
Pressure Output:
The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.
Efficiency:
Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.
Intercooling:
Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.
Applications:
The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.
It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.
In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.
.webp)
Are there air compressors specifically designed for high-pressure applications?
Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:
1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.
2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.
3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.
4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:
- Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
- Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
- Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
- Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
- Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.
5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.
When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.
High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.


editor by CX 2023-11-08
China Best Sales Refrigeration Compressor CHINAMFG Zbd 48 Kqe -Tfd 558 for Air Cond wholesaler
Product Description
| R22 50HZ | SPEC. | |||||
| Model | Power(HP) | Displacement(m³/h) | ARI | Weight(KG) | Height(MM) (Including shock-absorbing strap) | |
| Capacity(W) | Input Power(W) | |||||
| One-Phase(220V-240V) | ||||||
| ZR28K3-PFJ | 2.33 | 6.83 | 6900 | 2520 | 26 | 383 |
| ZR34K3-PFJ | 2.83 | 8.02 | 8200 | 2540 | 29 | 406 |
| ZR34KH-PFJ | 2.83 | 8.02 | 8200 | 2540 | 29 | 406 |
| ZR36K3-PFJ | 3 | 8.61 | 8900 | 2730 | 29 | 406 |
| ZR36KH-PFJ | 3 | 8.61 | 8900 | 2730 | 29 | 406 |
| ZR42K3-PFJ | 3.5 | 9.94 | 15710 | 3140 | 30 | 419 |
| ZR47K3-PFJ | 3.92 | 11.02 | 11550 | 3460 | 32 | 436 |
| Three-Phase(380V-420V) | ||||||
| ZR28K3-TFD | 2.33 | 6.83 | 6900 | 2140 | 25 | 383 |
| ZR34K3-TFD | 2.83 | 8.02 | 8200 | 2500 | 28 | 406 |
| ZR34KH-TFD | 2.83 | 8.02 | 8200 | 2470 | 28 | 406 |
| ZR36K3-TFD | 3 | 8.61 | 8790 | 2680 | 29 | 406 |
| ZR36KH-TFD | 3 | 8.61 | 8300 | 2680 | 28 | 406 |
| ZR42K3-TFD | 3.5 | 9.94 | 15710 | 3100 | 28 | 419 |
| ZR47KC-TFD | 3.92 | 11.16 | 11550 | 2430 | 30 | 436 |
| VR61KF-TFP-542 | 5.08 | 14.37 | 14900 | 4636 | 28.5 | 436 |
| ZR61KC-TFD | 5.08 | 14.37 | 14600 | 4430 | 37 | 457 |
| ZR61KH-TFD | 5.08 | 14.37 | 14972 | 4440 | 35.9 | 457 |
| ZR68KC-TFD | 5.57 | 16.18 | 16900 | 4950 | 39 | 457 |
| ZR72KC-TFD | 6 | 17.06 | 17700 | 5200 | 39 | 457 |
| ZR81KC-TFD | 6.75 | 19.24 | 19900 | 5800 | 40 | 462 |
| VR94KS-TFP | 8 | 22.14 | 23300 | 6750 | 57 | 497 |
| VR108KS-TFP | 9 | 25.68 | 26400 | 7500 | 63 | 552 |
| VR125KS-TFP | 10 | 28.81 | 31000 | 9000 | 63 | 552 |
| VR144KS-TFP | 12 | 33.22 | 35000 | 15710 | 63 | 552 |
| VR160KS-TFP | 13 | 36.37 | 38400 | 11400 | 65 | 572 |
| VR190KS-TFP | 15 | 43.34 | 46300 | 13700 | 66 | 572 |
| ZR250KC-TWD | 20 | 56.57 | 60000 | 17700 | 142 | 736 |
| ZR310KC-TWD | 25 | 71.43 | 74000 | 22000 | 160 | 725 |
| ZR380KC-TWD | 30 | 57.5 | 92000 | 26900 | 176 | 725 |
| ZR81KC-TFD | 6.75 | 19.24 | 19900 | 5800 | 40 | 462 |
| VR94KS-TFP | 8 | 22.14 | 23300 | 6750 | 57 | 497 |
| VR108KS-TFP | 9 | 25.68 | 26400 | 7500 | 63 | 552 |
| VR125KS-TFP | 10 | 28.81 | 31000 | 9000 | 63 | 552 |
| VR144KS-TFP | 12 | 33.22 | 35000 | 15710 | 63 | 552 |
| VR160KS-TFP | 13 | 36.37 | 38400 | 11400 | 65 | 572 |
| VR190KS-TFP | 15 | 43.34 | 46300 | 13700 | 66 | 572 |
| ZR250KC-TWD | 20 | 56.57 | 60000 | 17700 | 142 | 736 |
| ZR310KC-TWD | 25 | 71.43 | 74000 | 22000 | 160 | 725 |
| ZR380KC-TWD | 30 | 57.5 | 92000 | 26900 | 176 | 725 |
| TECHNICAL DATA | |||||||
| Model | ZB15KQ | ZB19KQ | ZB21KQ | ZB26KQ | ZB29KQ | ZB38KQ | ZB45KQ |
| ZB15KQE | ZB19KQE | ZB21KQE | ZB26KQE | ZB29KQE | ZB38KQE | ZB45KQE | |
| Motor Type | TFD | TFD | TFD | TFD | TFD | TFD | TFD |
| PFJ | PFJ | PFJ | PFJ | PFJ | |||
| Power(HP) | 2 | 2.5 | 3 | 3.5 | 4 | 5 | 6 |
| Displacement(m³/h) | 5.92 | 6.8 | 8.6 | 9.9 | 11.4 | 14.5 | 17.2 |
| Starting Current(LRA) | |||||||
| TFD | 24.5-26 | 30-32 | 36-40 | 41-46 | 50 | 58.6-65.5 | 67-74 |
| PFJ | 53-58 | 56-61 | 75-82 | 89-97 | 113 | ||
| Rated Load Current(RLA) | |||||||
| TFD | 4.3 | 4.3 | 5.7 | 7.1 | 7.9 | 8.9 | 11.5 |
| PFJ | 11.4 | 12.9 | 16.4 | 18.9 | 19.3 | ||
| Max. Operating Current(MCC) | |||||||
| TFD | 6 | 6 | 8 | 10 | 11 | 12.5 | 16.1 |
| PFJ | 16 | 18 | 23 | 24 | 27 | ||
| Motor Run | 40μF/370V | 40μF/370V | 55μF/370V | 60μF/370V | 60μF/370V | ||
| Crankcase Heater Power(W) | 70 | 70 | 70 | 70 | 70 | 70 | 70 |
| Size of Connecting Pipe(INCH) | |||||||
| Outer Diameter of Wxhaust Pipe | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 |
| Outer Diameter of Suction Pipe | 3/4 | 3/4 | 3/4 | 3/4 | 7/8 | 7/8 | 7/8 |
| Dimensions(MM) | |||||||
| Length | 242 | 242 | 243 | 243 | 242 | 242 | 242 |
| Width | 242 | 242 | 244 | 244 | 242 | 242 | 242 |
| Height | 383 | 383 | 412 | 425 | 430 | 457 | 457 |
| Foot Bottom Installation Dimensions(Aperture) | 190X190(8.5) | 190X190(8.5) | 190X190(8.5) | 190X190(8.5) | 190X190(8.5) | 190X190(8.5) | 190X190(8.5) |
| Fuel Injection(L) | 1.18 | 1.45 | 1.45 | 1.45 | 1.89 | 1.89 | 1.89 |
| Weight(KG) | |||||||
| Net.W | 23 | 25 | 27 | 28 | 37 | 38 | 40 |
| Gross.W | 26 | 29 | 30 | 31 | 40 | 41 | 44 |
| TECHNICAL DATA | |||||||
| Model | ZB48KQ | ZB58KQ | ZB66KQ | ZB76KQ | ZB88KQ | ZB95KQ | ZB114KQ |
| ZB48KQE | ZB58KQE | ZB66KQE | ZB76KQE | ||||
| Motor Type | TFD | TFD | TFD | TFD | TFD | TFD | TFD |
| Power(HP) | 7 | 8 | 9 | 10 | 12 | 13 | 15 |
| Displacement(m³/h) | 18.8 | 22.1 | 25.7 | 28.8 | 38.2 | 36.4 | 43.4 |
| Starting Current(LRA) | 101 | 86-95 | 100-111 | 110-118 | 110-118 | 140 | 174 |
| Rated Load Current(RLA) | 12.1 | 16.4 | 17.3 | 19.2 | 22.1 | 22.1 | 27.1 |
| Max. Operating Current(MCC) | 17 | 23 | 24.2 | 26.9 | 31 | 31 | 39 |
| Crankcase Heater Power(W) | 70 | 90 | 90 | 90 | 90 | ||
| Size of Connecting Pipe(INCH) | |||||||
| Outer Diameter of Wxhaust Pipe | 3/4 | 7/8 | 7/8 | 7/8 | 7/8 | 7/8 | 7/8 |
| Outer Diameter of Suction Pipe | 7/8 | 11/8 | 13/8 | 13/8 | 13/8 | 13/8 | 13/8 |
| Dimensions(MM) | |||||||
| Length | 242 | 263.6 | 263.6 | 263.6 | 263.6 | 242 | 264 |
| Width | 242 | 284.2 | 284.2 | 284.2 | 284.2 | 285 | 285 |
| Height | 457 | 477 | 546.1 | 546.1 | 546.1 | 522 | 553 |
| Foot Bottom Installation Dimensions(Aperture) | 190X190(8.5) | 190X190(8.5) | 190X190(8.5) | 190X190(8.5) | 190X190(8.5) | 190X190(8.5) | 190X190(8.5) |
| Fuel Injection(L) | 1.8 | 2.51 | 2.25 | 3.25 | 3.25 | 3.3 | 3.3 |
| Weight(KG) | |||||||
| Net.W | 40 | 59.87 | 60.33 | 65.32 | 65.32 | 65 | 65 |
| Gross.W | 44 | ||||||
Archean refrigeration has been focusing on the refrigeration industry for more than 10 years. The compressors are sold all over the world and have been well received. The company has accumulated strong experience in the compressor market, rich technical support, and a satisfactory one-stop procurement solution. You can rest assured You don’t need to worry about this series, from placing an order to receiving the goods. We provide a complete solution to serve customers well, which is our purpose of hospitality.
| Installation Type: | Movable Type |
|---|---|
| Lubrication Style: | Lubricated |
| Cylinder Position: | Vertical |
| Model: | Zr300kc-Twc-522 |
| Transport Package: | Wooden/Cartoon Box |
| Samples: |
US$ 100/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
What is the impact of humidity on compressed air quality?
Humidity can have a significant impact on the quality of compressed air. Compressed air systems often draw in ambient air, which contains moisture in the form of water vapor. When this air is compressed, the moisture becomes concentrated, leading to potential issues in the compressed air. Here’s an overview of the impact of humidity on compressed air quality:
1. Corrosion:
High humidity in compressed air can contribute to corrosion within the compressed air system. The moisture in the air can react with metal surfaces, leading to rust and corrosion in pipes, tanks, valves, and other components. Corrosion not only weakens the structural integrity of the system but also introduces contaminants into the compressed air, compromising its quality and potentially damaging downstream equipment.
2. Contaminant Carryover:
Humidity in compressed air can cause carryover of contaminants. Water droplets formed due to condensation can carry particulates, oil, and other impurities present in the air. These contaminants can then be transported along with the compressed air, leading to fouling of filters, clogging of pipelines, and potential damage to pneumatic tools, machinery, and processes.
3. Decreased Efficiency of Pneumatic Systems:
Excessive moisture in compressed air can reduce the efficiency of pneumatic systems. Water droplets can obstruct or block the flow of air, leading to decreased performance of pneumatic tools and equipment. Moisture can also cause problems in control valves, actuators, and other pneumatic devices, affecting their responsiveness and accuracy.
4. Product Contamination:
In industries where compressed air comes into direct contact with products or processes, high humidity can result in product contamination. Moisture in compressed air can mix with sensitive products, leading to quality issues, spoilage, or even health hazards in industries such as food and beverage, pharmaceuticals, and electronics manufacturing.
5. Increased Maintenance Requirements:
Humidity in compressed air can increase the maintenance requirements of a compressed air system. Moisture can accumulate in filters, separators, and other air treatment components, necessitating frequent replacement or cleaning. Excessive moisture can also lead to the growth of bacteria, fungus, and mold within the system, requiring additional cleaning and maintenance efforts.
6. Adverse Effects on Instrumentation:
Humidity can adversely affect instrumentation and control systems that rely on compressed air. Moisture can disrupt the accuracy and reliability of pressure sensors, flow meters, and other pneumatic instruments, leading to incorrect measurements and control signals.
To mitigate the impact of humidity on compressed air quality, various air treatment equipment is employed, including air dryers, moisture separators, and filters. These devices help remove moisture from the compressed air, ensuring that the air supplied is dry and of high quality for the intended applications.
.webp)
How do you maintain proper air quality in compressed air systems?
Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:
1. Air Filtration:
Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.
2. Moisture Control:
Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.
3. Oil Removal:
If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.
4. Regular Maintenance:
Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.
5. Air Receiver Tank Maintenance:
Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.
6. Air Quality Testing:
Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.
7. Education and Training:
Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.
8. Documentation and Record-Keeping:
Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.
By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.
.webp)
What is the difference between a piston and rotary screw compressor?
Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:
1. Operating Principle:
- Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
- Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.
2. Compression Method:
- Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
- Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.
3. Efficiency:
- Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
- Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.
4. Noise Level:
- Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
- Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.
5. Maintenance:
- Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
- Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.
6. Size and Portability:
- Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
- Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.
These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.


editor by CX 2023-11-03