Product Description
20HP 15kW Rotary Screw Air Compressor for Laser Cutter Industry
Products Description
| Type: | Oil Injected Permanent Magnetic Screw Compressor |
| Voltage: | 380V/50HZ/3P, 220V/60HZ/3P, 400V/50HZ/3P, 415V/50HZ/3P or Customer′s Requirements |
| Working Pressure: | 7bar/8bar/10bar |
| Installed Motor Power: | 18.5~110 Kw |
| Color: | Blue |
| Driven Method: | Taper Connection Direct Driven |
| Air End: | High Efficiency Airend |
| Trademark: | SCR |
| Transport Package: | Standard Wooden Packing |
| Available Certificate: | CE, ISO, UL, ASME, GHOST |
| Origin: | ZheJiang , China |
| application: | Packing,Painting,Precision Electroplating,Peparing |
Advantages:
1. China-Japan latest technology cooperation, high reliability.
2. Oil Cooling Permanent Magnetic Motor.
3. IP65 protection grade & heavy duty air filter, suitable for high dusty environment.
4. IE4 Efficiency motor efficiency.
5. Most energy saving mode, Only work at loading.
6. Wide frequency range 25%-100%.
7. Premium Magnetic material resist more than 180ºC temp.
8. Reliable PM motor supplier from Italy.
9. Direct Taper connection, no transmission power loss, easy maintenance.
10.Touch Screen PLC with preset running schedule, more intelligent control.
11. Both main motor and fan motor are inverter control, more accurate control.
12. Easy for installation and service.
13. Fantastic Energy Saving, save up to more than 30-40%.
Details image
HIGH QUALITY PM MOTOR
The motor winding take use of new technology vacuum expoxy potting process, it increase the thermal conducivity and motor insulation protection
Automatic vacuum expoxy processing enhance the motor quality
The new seal technology of winding, it is sealed with expoxy, better protection for winding.
F grade insulation grade, resist up to 180degree, integrated PTC protection.
PM MOTOR COOLING SCR heavy duty air filter
Liquid Cooling, IP65 PM Motor.
Indepent cooling system.
HIGH EFFICIENCY SEPARATION SYSTEM
Cyclone oil tank design encsure the high separation efficiency.
First stage mechanical centrifugal separation.
Second stage is high efficiency oil separator.
4000hours life-span of oil separator.
The oil content is lower than 3PPM.
LATEST V/F Inverter
* Latest V/F technology Inverter.
* CE/UL Certificed Inverter.
* Both Motor are inverter control.
* High reliable inverter brand proofed in the market.
* Professional service support.
* Automatic airend speed adjust to match your air demand, help good energy saving
How to choose ?
| Model No. | Working pressure bar |
Capacity(FAD) m3/min |
Power kw |
Driving model Cooling method |
Noise level dB |
Outlet diameter | Weight kg |
Dimension mm |
| YCR7.5 | 7 | 1.2 | 7.5 | Direct Air cooling(Standard) |
63 | G3/4″ | 400 | 890*560*840 |
| 8 | 1.1 | |||||||
| 10 | 1.0 | |||||||
| 12 | 0.8 | |||||||
| YCR11 | 7 | 1.8 | 11 | Direct Air cooling(Standard) |
64 | G3/4″ | 460 | 1050*690*1080 |
| 8 | 1.6 | |||||||
| 10 | 1.5 | |||||||
| 12 | 1.3 | |||||||
| YCR15 | 7 | 2.6 | 15 | Direct Air cooling(Standard |
65 | G3/4″ | 500 | 1050*690*1080 |
| 8 | 2.4 | |||||||
| 10 | 2.1 | |||||||
| 12 | 1.8 | |||||||
| YCR22 | 7 | 3.7 | 22 | Direct driven Air cooling |
65 | G1″ | 550 | 1350*780*1250 |
| 8 | 3.5 | |||||||
| 10 | 3.1 | |||||||
| 12 | 2.7 | |||||||
| YCR30 | 7 | 5.3 | 30 | Direct driven Air cooling |
67 | G1-1/2″ | 940 | 1420*900*1425 |
| 8 | 5.1 | |||||||
| 10 | 4.6 | |||||||
| 12 | 3.9 | |||||||
| YCR37 | 7 | 6.5 | 37 | Direct driven Air cooling |
67 | G1-1/2″ | 1000 | 1420*900*1425 |
| 8 | 6.2 | |||||||
| 10 | 5.6 | |||||||
| 12 | 4.9 | |||||||
| YCR45 | 7 | 8.1 | 45 | Direct driven Air cooling |
70 | G1-1/2″ | 1050 | 1750*1100*1700 |
| 8 | 7.5 | |||||||
| 10 | 7.0 | |||||||
| 12 | 6.0 | |||||||
| YCR55 | 7 | 10.5 | 55 | Direct driven Air cooling |
73 | G2″ | 1500 | 1750*1100*1700 |
| 8 | 10 | |||||||
| 9 | 9.0 | |||||||
| 12 | 8.0 | |||||||
| YCR75 | 7 | 14.3 | 75 | Direct driven Air cooling |
75 | G2″ | 1700 | 1750*1100*1700 |
| 8 | 13.0 | |||||||
| 10 | 11.8 | |||||||
| 12 | 10.5 |
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Angular |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Customization: |
Available
|
|
|---|
.webp)
What is the role of air compressors in power generation?
Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:
1. Combustion Air Supply:
Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.
2. Instrumentation and Control:
Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.
3. Cooling and Ventilation:
In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.
4. Cleaning and Maintenance:
Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.
5. Pneumatic Tools and Equipment:
In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.
6. Nitrogen Generation:
Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.
7. Start-up and Emergency Systems:
Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.
Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.
.webp)
How are air compressors used in refrigeration and HVAC systems?
Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:
1. Refrigerant Compression:
In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.
2. Refrigeration Cycle:
The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.
3. HVAC Cooling and Heating:
In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.
4. Air Conditioning:
Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.
5. Compressor Types:
Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.
6. Energy Efficiency:
Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.
By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.
.webp)
What is the purpose of an air compressor?
An air compressor serves the purpose of converting power, typically from an electric motor or an engine, into potential energy stored in compressed air. It achieves this by compressing and pressurizing air, which can then be used for various applications. Here’s a detailed explanation of the purpose of an air compressor:
1. Powering Pneumatic Tools: One of the primary uses of an air compressor is to power pneumatic tools. Compressed air can be used to operate a wide range of tools, such as impact wrenches, nail guns, paint sprayers, sanders, and drills. The compressed air provides the necessary force and energy to drive these tools, making them efficient and versatile.
2. Supplying Clean and Dry Air: Air compressors are often used to supply clean and dry compressed air for various industrial processes. Many manufacturing and production operations require a reliable source of compressed air that is free from moisture, oil, and other contaminants. Air compressors equipped with appropriate filters and dryers can deliver high-quality compressed air for applications such as instrumentation, control systems, and pneumatic machinery.
3. Inflating Tires and Sports Equipment: Air compressors are commonly used for inflating tires, whether it’s for vehicles, bicycles, or sports equipment. They provide a convenient and efficient method for quickly filling tires with the required pressure. Air compressors are also used for inflating sports balls, inflatable toys, and other similar items.
4. Operating HVAC Systems: Air compressors play a crucial role in the operation of heating, ventilation, and air conditioning (HVAC) systems. They provide compressed air for controlling and actuating dampers, valves, and actuators in HVAC systems, enabling precise regulation of air flow and temperature.
5. Assisting in Industrial Processes: Compressed air is utilized in various industrial processes. It can be used for air blow-off applications, cleaning and drying parts, powering air-operated machinery, and controlling pneumatic systems. Air compressors provide a reliable and efficient source of compressed air that can be tailored to meet the specific requirements of different industrial applications.
6. Supporting Scuba Diving and Breathing Systems: In scuba diving and other breathing systems, air compressors are responsible for filling diving tanks and supplying breathable air to divers. These compressors are designed to meet strict safety standards and deliver compressed air that is free from contaminants.
Overall, the purpose of an air compressor is to provide a versatile source of compressed air for powering tools, supplying clean air for various applications, inflating tires and sports equipment, supporting industrial processes, and facilitating breathing systems in specific contexts.


editor by CX 2024-01-04
China supplier Economic Practical Exquisite and Senior Small Car Air Compressor air compressor for sale
Product Description
Product Description
Company Profile
HangZhou CHINAMFG AUTOMOBILE TECHNOLOGY CO.,LTD. was founded in 1996, which is located in HangZhou city. It
specializes in auto body repair system, auto lift and tire equipment with technology development, product development,
production, sales and service.
Our company has passed the ISO9001, and our products has got CE approved, now we have some national patents, which
show that we have a professional R&D Team. Our auto body repair system has been widely exported all over the world and
are widely used in various domestic and foreign repair shops and 4S vehicle maintenance stations. We has participated in
domestic professional equipment exhibitions and global body repairs in Las Vegas for several years. The Equipment
Exhibition (NACE) has won unanimous praise and has become a world-renowned professional equipment manufacturer.
Welcome you choose “JINTUO” brand, We will provide you with our heart.
FAQ
Q: How do you control your production quality?
A: We have an independent QC team. Our QC teams do sample inspection, part inspection during production and 100% final
inspection before delivery.
Q: Can I have a visit to your company before placing an order?
A: Sure, welcome to visit CHINAMFG AUTO TECH. There is a showroom in our factory, you can get all what you want about the
auto equipment.
Q: May I know the Lead time?
A:The lead time of our machine is 7 to 20 days.
Q: What is your payment terms?
We accept Alibaba Trade Assurance, TT, LC, etc.
Q: Can you provide the whole workshop automotive equipment?
A: Yes. we have 8 series of product contains nearly all kinds of automotive equipment. Also we have helped many customers
to open their body shop.
Q: How long is the warranty?
A: Our warranty period is 18 months,we will send free parts for replacement within it, and supply spare parts for lifetime.
Q: Are you a factory?
A: CHINAMFG has invested a factory with an area of 12,000 square meters, specializing in the production of various frame machine,
car lift,wheel alignment,car wash machine etc.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Technical Support |
|---|---|
| Warranty: | 18 Months |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Cylinder Arrangement: | Balanced Opposed Arrangement |
| Cylinder Position: | Vertical |
| Samples: |
US$ 4599/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
What are the energy-saving technologies available for air compressors?
There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:
1. Variable Speed Drive (VSD) Compressors:
VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.
2. Energy-Efficient Motors:
The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.
3. Heat Recovery Systems:
Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.
4. Air Receiver Tanks:
Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.
5. System Control and Automation:
Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.
6. Leak Detection and Repair:
Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.
7. System Optimization and Maintenance:
Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.
By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.
.webp)
What safety precautions should be taken when working with compressed air?
Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:
1. Personal Protective Equipment (PPE):
Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.
2. Compressed Air Storage:
Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.
3. Pressure Regulation:
Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.
4. Air Hose Inspection:
Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.
5. Air Blowguns:
Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.
6. Air Tool Safety:
Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.
7. Air Compressor Maintenance:
Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.
8. Training and Education:
Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.
9. Lockout/Tagout:
When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.
10. Proper Ventilation:
Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.
By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.
.webp)
What maintenance is required for air compressors?
Maintaining air compressors is essential to ensure their optimal performance, longevity, and safe operation. Regular maintenance helps prevent breakdowns, improves efficiency, and reduces the risk of accidents. Here are some key maintenance tasks for air compressors:
1. Regular Inspection: Perform visual inspections of the air compressor to identify any signs of wear, damage, or leaks. Inspect the compressor, hoses, fittings, and connections for any abnormalities. Pay attention to oil leaks, loose bolts, and worn-out components.
2. Oil Changes: If your air compressor has an oil lubrication system, regular oil changes are crucial. Follow the manufacturer’s recommendations for the frequency of oil changes and use the recommended oil type. Dirty or degraded oil can impact compressor performance and lead to premature wear.
3. Air Filter Cleaning or Replacement: Clean or replace the air filter regularly to ensure proper air intake and prevent contaminants from entering the compressor. Clogged or dirty filters can restrict airflow and reduce efficiency.
4. Drain Moisture: Air compressors produce moisture as a byproduct of the compression process. Accumulated moisture in the tank can lead to rust and corrosion. Drain the moisture regularly from the tank to prevent damage. Some compressors have automatic drains, while others require manual draining.
5. Belt Inspection and Adjustment: If your compressor has a belt-driven system, inspect the belts for signs of wear, cracks, or tension issues. Adjust or replace the belts as necessary to maintain proper tension and power transmission.
6. Tank Inspection: Inspect the compressor tank for any signs of corrosion, dents, or structural issues. A damaged tank can be hazardous and should be repaired or replaced promptly.
7. Valve Maintenance: Check the safety valves, pressure relief valves, and other valves regularly to ensure they are functioning correctly. Test the valves periodically to verify their proper operation.
8. Motor and Electrical Components: Inspect the motor and electrical components for any signs of damage or overheating. Check electrical connections for tightness and ensure proper grounding.
9. Keep the Area Clean: Maintain a clean and debris-free area around the compressor. Remove any dirt, dust, or obstructions that can hinder the compressor’s performance or cause overheating.
10. Follow Manufacturer’s Guidelines: Always refer to the manufacturer’s manual for specific maintenance instructions and recommended service intervals for your air compressor model. They provide valuable information on maintenance tasks, lubrication requirements, and safety precautions.
Regular maintenance is vital to keep your air compressor in optimal condition and extend its lifespan. It’s also important to note that maintenance requirements may vary depending on the type, size, and usage of the compressor. By following a comprehensive maintenance routine, you can ensure the reliable operation of your air compressor and maximize its efficiency and longevity.


editor by CX 2023-12-28
China supplier 4110001164013 612600130651 LG 958 Wheel Loader CHINAMFG Wp10 Diesel Engine Air Compressor arb air compressor
Product Description
411 LG 958 Wheel Loader CHINAMFG WP10 Diesel Engine Air Compressor
Product Description
The function of the air compressor in the engine is as follows:
1. Compressed air can push the brake cylinder and clutch cylinder, thereby controlling the braking of the car.
2. By utilizing compressed air, the water spray function of the water drip brake can be used to achieve cooling of the brake drum, effectively reducing the risk of burning the brake pads due to emergency and severe braking during daily driving, thereby avoiding accidents of brake failure.
3. The air compressor is the heart of the automotive air conditioning system, which can convert the automotive refrigerant from a gaseous state to a liquid state, thereby achieving the purpose of refrigerant heat dissipation and condensation. At the same time, in the automotive air conditioning system, the air compressor is also the pressure source for medium operation in the pipeline. Without the compressor, the air conditioning system not only does not cool but also loses basic power for operation.
4. The turbo engine also uses an air compressor to compress air and send it to the car’s intake pipe, thereby reducing fuel consumption and outputting greater power output from the high combustion efficiency of gasoline or diesel in the turbo engine.
5. In the braking system of a car, pneumatic braking is provided, and compressed air is also required.
6. The air compressor also provides the aerodynamic power of the air suspension system, which is output to the air chamber of the spring and shock absorber, in order to change the height of the vehicle and soften the suspension to improve shock comfort and safety.
Detailed Photos
| item | value |
| Condition | New |
| Place of Origin | ZheJiang ,China |
| Warranty | 3 months |
| Quality | High-Quality |
| MOQ | 1 Piece |
| Packing | Carton |
| Condition | 100% Brand-new |
| Delivery time | 2-5days |
| Size | Standard Size |
| Certification | IOS9001 |
| Payment | T/T |
| Weight | 12.1kg |
Certifications
HangZhou CHINAMFG International Trade Co., Ltd. has been committed to building excellent suppliers in the automobile industry for many years, providing high-quality vehicle and auto parts services for new and old customers. Our company was founded in 2013,Warehouse inventory is huge, and many kinds, to meet your various needs. The company has been adhering to the quality as the core,to serve customers as their responsibility, strict with
themselves, has been China and the world a lot of quality inspection,china heavy truck spare parts has been exported to Russia,the United States, Europe and Southeast Asia and other countries.Our company is looking CHINAMFG to your attention and visit.
Packaging & Shipping
1. Our packing uses export wooden cases, plastic boxes, cartons or pallets. All the package are very strong, the wooden box is firmly bound, the package is covered with a waterproof film to prevent water or damage during transportation.Before packing, we can also stick corresponding labels and shipping marks according to your needs. All our goods are well packed.
2. According to the quantity, we can use express delivery, air transportation or CHINAMFG transportation, automobile transportation, railway transportation, etc. we have our own freight forwarders, and we can also use the designated freight forwarders of customers, which can meet various delivery requirements of customers, such as EXW, FOB, CIF, etc.It can also be exported from many ports in China. Such as HangZhou port, HangZhou port, HangZhou port, ZheJiang port, HangZhou River and HangZhou in China.
3. We can also send the goods by express if the customers have less goods. According to customer’s request, we can use express.such as DHL, TNT, EMS, FedEx, etc. the delivery time is 3-7. Safe, fast and convenient. It’s also a good choice for you.
Company Profile
HangZhou CHINAMFG International Trade Co., Ltd. was established in 2013. Its main business is the export of truck parts to the Russian,Europe and Southeast Asia market.like CHINAMFG ,sinoturk ,faw CHINAMFG CHINAMFG ZF ,cummins CHINAMFG LGMG CHINAMFG .DCEC,isuzu caterpiller .CHINAMFG CHINAMFG spare parts .The company has its own warehouse in HangZhou with an area of 2000 square meters.and have a large stock .And Ability to quickly collect and deliver goods.Our main business is SINOTRUK, CHINAMFG , FAW, CHINAMFG and all kinds of construction machinery accessories. We always adhere to the quality of products as the core, to serve customers as the task.Hope to be able to better communicate with friends from all over the world, and through this communication, promote the development of cultural exchanges and economic exchanges between the 2 sides.
FAQ
Q1:How can get exact price,Can I get a price discount? A1: If you can supply correct part number,it’s the best way to get exact price,The price depends on your purchasing quantity, more quantity more discount.
Q2:Can we get samples for testing? A2:We can provide you with free samples,you only need to bear the freight.If your first purchase quantity meets our requirements,we can apply for you more favorable price.
Q3:How long is the production item of the goods? A3:Our warehouse has sufficient regular sizes stocking,ready to delivery.And we have a lot of raw materials storage,customer specifications can be arranged in a timely production,delivery can be made within 7-10 days.
Q4. What is your terms of payment? A4: T/T 30% as deposit, and 70% before delivery. We’ll show the photos of the products and packages before delivery.
Q5. What is your terms of delivery? A5: EXW, FCA, FOB, CFR, CIF, DDU.
Q6. How about your delivery time? A6: Generally, it will take 15 to 30 days after receiving your advance payment. The specific delivery time depends on the items and the quantity of your order.
Q7.If we don’t find what we need on your website, what should we do? A7: You can send us the OE number or of the product you need, we will check if we have them.
Q8. Which useful documents you can supply? A8:We can supply certificate of CHINAMFG ,certificated of quality invoice issued by China Chamber of international commerce and inspection report.
Q9. About product quality guarantee and after-sales service A9:our products have 6 months quality guarantee ,we also provide strict testing before shipment and follow up the customer’s feedback remote online service.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | 24 Hours Online Service |
|---|---|
| Warranty: | 24 Hours Online Service |
| Transport Package: | Carton |
| Specification: | 3.5kg |
| Trademark: | Carruchi |
| Origin: | China |
| Samples: |
US$ 95/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors utilized in the aerospace industry?
Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:
1. Aircraft Systems:
Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.
2. Ground Support Equipment:
Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.
3. Component Testing:
Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.
4. Airborne Systems:
In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.
5. Environmental Control Systems:
Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.
6. Engine Testing:
In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.
7. Oxygen Systems:
In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.
It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.
.webp)
Can air compressors be used for inflating tires and sporting equipment?
Yes, air compressors can be used for inflating tires and sporting equipment, providing a convenient and efficient method for achieving the desired air pressure. Here’s how air compressors are used for these purposes:
1. Tire Inflation:
Air compressors are commonly used for inflating vehicle tires, including car tires, motorcycle tires, bicycle tires, and even larger truck or trailer tires. Air compressors provide a continuous source of pressurized air, allowing for quick and accurate inflation. They are often used in automotive repair shops, gas stations, and by individuals who regularly need to inflate tires.
2. Sporting Equipment Inflation:
Air compressors are also useful for inflating various types of sporting equipment. This includes inflatable balls such as soccer balls, basketballs, footballs, and volleyballs. Additionally, air compressors can be used to inflate inflatable water toys, air mattresses, inflatable kayaks, and other recreational items that require air for proper inflation.
3. Air Tools for Inflation:
Air compressors can power air tools specifically designed for inflation purposes. These tools, known as inflators or air blow guns, provide controlled airflow for inflating tires and sporting equipment. They often have built-in pressure gauges and nozzles designed to fit different types of valves, making them versatile and suitable for various inflation tasks.
4. Adjustable Pressure:
One advantage of using air compressors for inflation is the ability to adjust the pressure. Most air compressors allow users to set the desired pressure level using a pressure regulator or control knob. This feature ensures that tires and sporting equipment are inflated to the recommended pressure, promoting optimal performance and safety.
5. Efficiency and Speed:
Air compressors provide a faster and more efficient inflation method compared to manual pumps. The continuous supply of compressed air allows for quick inflation, reducing the time and effort required to inflate tires and sporting equipment manually.
6. Portable Air Compressors:
For inflating tires and sporting equipment on the go, portable air compressors are available. These compact and lightweight compressors can be easily carried in vehicles or taken to sports events and outdoor activities, ensuring convenient access to a reliable air supply.
It is important to note that when using air compressors for inflating tires, it is recommended to follow manufacturer guidelines and proper inflation techniques to ensure safety and avoid overinflation.
.webp)
What maintenance is required for air compressors?
Maintaining air compressors is essential to ensure their optimal performance, longevity, and safe operation. Regular maintenance helps prevent breakdowns, improves efficiency, and reduces the risk of accidents. Here are some key maintenance tasks for air compressors:
1. Regular Inspection: Perform visual inspections of the air compressor to identify any signs of wear, damage, or leaks. Inspect the compressor, hoses, fittings, and connections for any abnormalities. Pay attention to oil leaks, loose bolts, and worn-out components.
2. Oil Changes: If your air compressor has an oil lubrication system, regular oil changes are crucial. Follow the manufacturer’s recommendations for the frequency of oil changes and use the recommended oil type. Dirty or degraded oil can impact compressor performance and lead to premature wear.
3. Air Filter Cleaning or Replacement: Clean or replace the air filter regularly to ensure proper air intake and prevent contaminants from entering the compressor. Clogged or dirty filters can restrict airflow and reduce efficiency.
4. Drain Moisture: Air compressors produce moisture as a byproduct of the compression process. Accumulated moisture in the tank can lead to rust and corrosion. Drain the moisture regularly from the tank to prevent damage. Some compressors have automatic drains, while others require manual draining.
5. Belt Inspection and Adjustment: If your compressor has a belt-driven system, inspect the belts for signs of wear, cracks, or tension issues. Adjust or replace the belts as necessary to maintain proper tension and power transmission.
6. Tank Inspection: Inspect the compressor tank for any signs of corrosion, dents, or structural issues. A damaged tank can be hazardous and should be repaired or replaced promptly.
7. Valve Maintenance: Check the safety valves, pressure relief valves, and other valves regularly to ensure they are functioning correctly. Test the valves periodically to verify their proper operation.
8. Motor and Electrical Components: Inspect the motor and electrical components for any signs of damage or overheating. Check electrical connections for tightness and ensure proper grounding.
9. Keep the Area Clean: Maintain a clean and debris-free area around the compressor. Remove any dirt, dust, or obstructions that can hinder the compressor’s performance or cause overheating.
10. Follow Manufacturer’s Guidelines: Always refer to the manufacturer’s manual for specific maintenance instructions and recommended service intervals for your air compressor model. They provide valuable information on maintenance tasks, lubrication requirements, and safety precautions.
Regular maintenance is vital to keep your air compressor in optimal condition and extend its lifespan. It’s also important to note that maintenance requirements may vary depending on the type, size, and usage of the compressor. By following a comprehensive maintenance routine, you can ensure the reliable operation of your air compressor and maximize its efficiency and longevity.


editor by CX 2023-12-27
China Best Sales Air Compressor Parts Air Filter 23458-5 23458-4 Fits to Compressor supplier
Product Description
Air Compressor Parts Air Filter 23458-5 23458-4 Fits to Compressor
| Model No: | 23458-5 23458-4 | Efficieney: | 99.0% |
| WorkingTemperature | 2500h |
Operating pressure: | |
| Part number: | 23458-5 23458-4 | Brand: | |
| Trademark: | Transport Package: | Netural packing or According Customer Require | |
| Origin: | HangZhou China | Hs code: | 84213990 |
| Out Diameter | Inner Diameter | Total Height : | Volume change to Product Net Weight: |
| 320mm | 190mm | 562mm | 11.5Kgs |
Established in 2571,HangZhou Sange Filter Co., Ltd is a modern professional manufacturer and exporter integrated with design, professional production of air compressor, sales and service located in the big city HangZhou,ZheJiang province,China ,with convenient transportation access.Our main port is in HangZhou ,HangZhou,HangZhou,ZheJiang and so on . Our company has experienced design team, industry-leading R & D capability and strong manufacturing strength, the product has a stylish look and feel, and always follow the current fashion trends emerging, high-quality,filed-renowned.Our engineers is expriened who have occupied in filter filed more than 10 years.
All of our products comply with international quality standards and are greatly appreciated in a variety of different markets throughout the world.
Otherwise we have gained a widely sales network over the world which mainly sales to India,Mexico,Pakistan,south Afica and other countries, and we sincerely hope to establish friendly business relations with customers from all over the world.
Main products: Air filter, oil and gas separation filter, oil filter, fuel filter, dust recovery filter.
Mainly applies to: All kinds of domestic or imported air compressors, buses, heavy goods vehicles, engineering machinery, environmental purification system etc
The air compressor filters relates to brand:Atlas,Ingersoll Rand,Sullair,LIUTECH, Kobelco, Hitachi, CompAir,Bolaite,Jufeng,Kaishan,Fehe,Schneider, Quincy, Boge,Screw,GardnerDenver,Mitsui,Ganey,Kaeser,Rotoromp,Xihu (West Lake) Dis.in,Tanabe,United osd,Sucessengine,Inspur, Mtair, Campo, HangZhou Xinda, Eccoair,Desran, Guli. ABAC and so on.
Our company will expand the scale of operation and steady development of corporate economic, sincerely seeking partners, good faith cooperation and seek common development,.
If you are interested in any of our products or would like to discuss a custom order, please feel free to contact us. We are looking CHINAMFG to forming successful business relationships with new clients around the world in the near future.
Contact name: CHINAMFG Chan
E-mail:sg08@szsgfilter
AFQ:
1.Price:
All prices and terms are quoted in US Dollar under FOB HangZhou AND HangZhou or CIF your country port ,and the price available for 1 months.
2. Minimum Order Quantity:
Each item has a minimum order quantity, which would be stated in our quote sheet. Assorted items would be negotiable.
3.Delivery Lead Time:
If there have stocks, the lead time is about 3 days after we get the payment, if need producing ,A week after we get the prepay CHINAMFG request.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Clapboard: | without Clapboard |
|---|---|
| Filter Number: | 32 |
| Medium Material: | Filter Paper |
| Efficiency: | F9 |
| Filtration Grade: | Pre Filter |
| Type: | Air Filter |
| Customization: |
Available
|
|
|---|
.webp)
How does variable speed drive technology improve air compressor efficiency?
Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:
1. Matching Air Demand:
Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.
2. Reduced Unloaded Running Time:
Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.
3. Soft Starting:
Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.
4. Energy Savings at Partial Load:
In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.
5. Elimination of On/Off Cycling:
Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.
6. Enhanced System Control:
VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.
By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.
.webp)
Are there differences between single-stage and two-stage air compressors?
Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:
Compression Stages:
The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.
Compression Process:
In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.
Pressure Output:
The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.
Efficiency:
Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.
Intercooling:
Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.
Applications:
The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.
It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.
In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.
.webp)
Can you explain the basics of air compressor terminology?
Understanding the basic terminology related to air compressors can help in better comprehension of their operation and discussions related to them. Here are some essential terms related to air compressors:
1. CFM (Cubic Feet per Minute): CFM is a unit of measurement that denotes the volumetric flow rate of compressed air. It indicates the amount of air a compressor can deliver within a minute and is a crucial factor in determining the compressor’s capacity.
2. PSI (Pounds per Square Inch): PSI is a unit of measurement used to quantify pressure. It represents the force exerted by the compressed air on a specific area. PSI is a vital specification for understanding the pressure capabilities of an air compressor and determining its suitability for various applications.
3. Duty Cycle: Duty cycle refers to the percentage of time an air compressor can operate in a given time period. It indicates the compressor’s ability to handle continuous operation without overheating or experiencing performance issues. For instance, a compressor with a 50% duty cycle can run for half the time in a given hour or cycle.
4. Horsepower (HP): Horsepower is a unit used to measure the power output of a compressor motor. It indicates the motor’s capacity to drive the compressor pump and is often used as a reference for comparing different compressor models.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air delivered by the compressor. It helps in stabilizing pressure fluctuations, allowing for a more consistent supply of compressed air during peak demand periods.
6. Single-Stage vs. Two-Stage: These terms refer to the number of compression stages in a reciprocating air compressor. In a single-stage compressor, air is compressed in a single stroke of the piston, while in a two-stage compressor, it undergoes initial compression in one stage and further compression in a second stage, resulting in higher pressures.
7. Oil-Free vs. Oil-Lubricated: These terms describe the lubrication method used in air compressors. Oil-free compressors have internal components that do not require oil lubrication, making them suitable for applications where oil contamination is a concern. Oil-lubricated compressors use oil for lubrication, enhancing durability and performance but requiring regular oil changes and maintenance.
8. Pressure Switch: A pressure switch is an electrical component that automatically starts and stops the compressor motor based on the pre-set pressure levels. It helps maintain the desired pressure range in the receiver tank and protects the compressor from over-pressurization.
9. Regulator: A regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications and ensures a consistent and safe supply of compressed air.
These are some of the fundamental terms associated with air compressors. Familiarizing yourself with these terms will aid in understanding and effectively communicating about air compressors and their functionality.


editor by CX 2023-12-22
China supplier Good Price Air Compressor/Air Pump/AC Compressor/Oiless Air Compressor/Auto Scanner/Car Repair Tools/Tire Changer/Car Lift/Screw Compresser air compressor oil
Product Description
Good Price Air Compressor/Air Pump/Ac Compressor/Oiless Air Compressor/Auto Scanner/Car Repair Tools/Tire changer/Car Lift/Screw Compresser
Product Description
Detailed Photos
XP2070-8
| Model | XP2070-8 |
| Power | 3KW/4HP |
| Voltage | 220/380V |
| Exhaust volume | 250l/min |
| Rated pressure | 8bar |
| Machine head speed | 880rmp |
| Air storage tank volume | 90L |
| Cylinder | 70mm*2 |
| External dimensions | 1150*440*840mm |
| Net weight | 90KG |
XP2095-8
| Model | XP2095-8 |
| Power | 4KW/5.5HP |
| Voltage | 380V |
| Exhaust volume | 600l/min |
| Rated pressure | 8bar |
| Machine head speed | 880rmp |
| Air storage tank volume | 160L |
| Cylinder | 95mm*2 |
| External dimensions | 1260*460*1571mm |
| Net weight | 145KG |
XP-0.12/8
| Model | XP0.12/8 |
| Power | 1.1KW/1.5HP |
| Voltage | 220V |
| Exhaust volume | 120l/min |
| Rated pressure | 8bar |
| Machine head speed | 980rmp |
| Air storage tank volume | 70L |
| Cylinder | 51mm*2 |
| External dimensions | 1000*380*760mm |
| Net weight | 60KG |
XP-0.25/8
| Model | XP0.25/8 |
| Power | 2.2KW/3HP |
| Voltage | 220V |
| Exhaust volume | 250l/min |
| Rated pressure | 8bar |
| Machine head speed | 980rmp |
| Air storage tank volume | 80L |
| Cylinder | 65mm*2 |
| External dimensions | 1120*400*820mm |
| Net weight | 81KG |
XP-0.6/8
| Model | XP0.6/8 |
| Power | 4KW/5.5HP |
| Voltage | 380V |
| Exhaust volume | 600l/min |
| Rated pressure | 8bar |
| Machine head speed | 930rmp |
| Air storage tank volume | 105L |
| Cylinder | 90mm*2 |
| External dimensions | 1150*500*850mm |
| Net weight | 130KG |
XP-1.05/14
| Model | XP1.05/14 |
| Power | 7.5KW/10HP |
| Voltage | 380V |
| Exhaust volume | 1050l/min |
| Rated pressure | 14bar |
| Machine head speed | 760rmp |
| Air storage tank volume | 300L |
| Cylinder | 105mm*2 55mm*2 |
| External dimensions | 1520*600*1150mm |
| Net weight | 295KG |
TOTAL
Product display
Trade Info:
|
Trade Terms |
FOB / CFR |
|
MOQ |
3UNITS (USD200.00 extrally charged for LCL shipment to cover the inland freight + custom declaration fee) |
|
Port |
HangZhou |
|
Shipment |
BY SEA /AIR |
|
Payment Terms |
T/T |
|
Payment condition |
30% prepayment,balanced before shipment. |
|
Supply Capability |
1000units/month |
|
Sample Availability |
Yes ,But all freight(Inland freight +seafreight) covered by buyer |
|
Sample Time |
5-10days(depends on whether have in stock) |
|
Lead Time |
25-30days(Rush season 5-10days longer) |
|
Packing |
Metal frame&Carton |
|
Delivery time |
30-45days shipping time (depends on destination position) |
|
Service |
1% free parts;1year warranty after port of destination |
Why do you choose our product?
1. Why should I choose our product?
There are several reasons you should strongly consider purchasing our product:
*Top raw materials from only the finest plants
*Only professional cost-effective equipment
*Low prices with high quality revenue producing products
*Increase productivity for your customers( Your customers gain more, they will enjoy buying from you.)
*The best customer service. Quick reply within 24 hours and more.
*Great Warranty
2. How safe are your product?
our product have been tested and CE certified for safety .
They also meet the American and Australian Standard.
3. Should I keep repair and replacement parts in stock?
Yes, most all commonly required repair and replacement parts should always keep in stock.
4. Are your product designed for commercial use?
All of our product can be used in commercial applications without any problems.
5. Do you offer any custom designs?
Yes,we provide OEM/ODM services to top range partners.Produce a superior product for you by your designs. /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | 24 Hours Online |
|---|---|
| Warranty: | 36 Months |
| Application: | Back Pressure Type, Low Back Pressure Type |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
How are air compressors utilized in pharmaceutical manufacturing?
Air compressors play a crucial role in pharmaceutical manufacturing, where they are utilized for various critical applications. The pharmaceutical industry requires a reliable source of clean and compressed air to ensure the safety, efficiency, and quality of its processes. Here’s an overview of how air compressors are utilized in pharmaceutical manufacturing:
1. Manufacturing Processes:
Air compressors are used in numerous manufacturing processes within the pharmaceutical industry. Compressed air is employed for tasks such as mixing and blending of ingredients, granulation, tablet compression, coating, and encapsulation of pharmaceutical products. The controlled delivery of compressed air facilitates precise and consistent manufacturing processes, ensuring the production of high-quality pharmaceuticals.
2. Instrumentation and Control Systems:
Pharmaceutical manufacturing facilities rely on compressed air for powering instrumentation and control systems. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control temperature and pressure, and automate various processes. The clean and dry nature of compressed air makes it ideal for maintaining the integrity and accuracy of these critical control mechanisms.
3. Packaging and Filling:
Air compressors are employed in pharmaceutical packaging and filling processes. Compressed air is used to power machinery and equipment for bottle cleaning, labeling, capping, and sealing of pharmaceutical products. Compressed air provides the necessary force and precision for efficient and reliable packaging, ensuring product safety and compliance.
4. Cleanroom Environments:
Pharmaceutical manufacturing often takes place in controlled cleanroom environments to prevent contamination and maintain product quality. Air compressors are used to supply clean and filtered compressed air to these cleanrooms, ensuring a controlled and sterile environment for the production of pharmaceuticals. Compressed air is also utilized in cleanroom air showers and air curtains for personnel and material decontamination.
5. Laboratory Applications:
In pharmaceutical laboratories, air compressors are utilized for various applications. Compressed air is used in laboratory instruments, such as gas chromatographs, mass spectrometers, and other analytical equipment. It is also employed in clean air cabinets, fume hoods, and laminar flow benches, providing a controlled and clean environment for testing, analysis, and research.
6. HVAC Systems:
Air compressors are involved in heating, ventilation, and air conditioning (HVAC) systems in pharmaceutical manufacturing facilities. Compressed air powers the operation of HVAC controls, dampers, actuators, and air handling units, ensuring proper air circulation, temperature control, and environmental conditions in various manufacturing areas.
By utilizing air compressors in pharmaceutical manufacturing, the industry can maintain strict quality standards, enhance operational efficiency, and ensure the safety and efficacy of pharmaceutical products.
.webp)
What safety precautions should be taken when working with compressed air?
Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:
1. Personal Protective Equipment (PPE):
Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.
2. Compressed Air Storage:
Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.
3. Pressure Regulation:
Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.
4. Air Hose Inspection:
Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.
5. Air Blowguns:
Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.
6. Air Tool Safety:
Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.
7. Air Compressor Maintenance:
Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.
8. Training and Education:
Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.
9. Lockout/Tagout:
When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.
10. Proper Ventilation:
Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.
By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.
.webp)
In which industries are air compressors widely used?
Air compressors find extensive usage across various industries due to their versatility and ability to generate compressed air. Here are some industries where air compressors are widely employed:
1. Manufacturing: Air compressors are essential in manufacturing processes for powering pneumatic tools and equipment. They are used for tasks such as operating assembly lines, powering robotic machinery, running paint sprayers, and driving pneumatic actuators.
2. Construction: Air compressors play a crucial role in the construction industry. They power pneumatic tools like jackhammers, nail guns, impact wrenches, and concrete breakers. Compressed air is also used for concrete spraying, sandblasting, and operating air-powered lifts and hoists.
3. Automotive: Air compressors are widely used in automotive manufacturing and repair. They power air tools used in auto body shops, tire inflation equipment, pneumatic lifts, and air-operated brake systems. Compressed air is also utilized in vehicle painting and drying processes.
4. Oil and Gas: The oil and gas industry extensively relies on air compressors for various applications. They are used for pneumatic drilling, powering pneumatic tools in refineries and petrochemical plants, operating pneumatic valves and actuators, and providing instrument air for control systems.
5. Food and Beverage: Air compressors are employed in the food and beverage industry for tasks such as packaging, bottling, and sealing. They power pneumatic conveying systems, control air pressure in food processing equipment, and provide clean compressed air for food handling and storage.
6. Pharmaceutical and Healthcare: Air compressors find application in pharmaceutical manufacturing and healthcare facilities. They are used for operating medical equipment, such as ventilators and dental tools. Compressed air is also utilized in pharmaceutical processes, including tablet coating, fluid bed drying, and aseptic packaging.
7. Aerospace: The aerospace industry relies on air compressors for various applications, including aircraft maintenance and assembly. They power pneumatic tools for aircraft repair, provide compressed air for cleaning and pressurizing systems, and support ground operations, such as tire inflation and aircraft de-icing.
8. Mining: Air compressors are extensively used in the mining industry. They power pneumatic tools for drilling, rock blasting, and excavation. Compressed air is also utilized for ventilation, conveying materials, and operating underground equipment.
9. Energy and Utilities: Air compressors play a vital role in the energy and utilities sector. They are used in power generation plants for pneumatic control systems, instrument air, and operating pneumatic valves. Compressed air is also employed for cleaning and maintenance purposes.
These are just a few examples of the industries where air compressors are widely utilized. The versatility and reliability of air compressors make them indispensable in numerous applications across diverse sectors.


editor by CX 2023-12-20
China supplier Oil-Injected Rotary Screw Air Compressor for CHINAMFG Ga5-11 wholesaler
Product Description
Product Description
Oil-injected rotary screw air compressor for CHINAMFG GA5 GA7 GA11
Company Information
For over 15 years, the air compressor specialists at Seadweer have been supplying all brands of air compressors, as well as air compressor parts, accessories and lubricants . Seadweer is committed to giving you the lowest prices with the quickest lead time on the highest quality parts available.We stock every part for your air compressor from gaskets to airends. With more than 10,000 parts available for immediate shipment, Seadweer can handle all of your compressed air needs. When you contact Seadweer you will talk directly with an air compressor parts expert. This ensures that you will get the correct part within the time frame that you require.
Our Service
Strong Points About Trade Assurance:
1. protect ur orders form payment to delivery.
2. Multiple Safe Payment Options.
3. Your payment is secured by Alibaba.com’s anti-fraud system.
4. Low Transaction Fees.
Starting order from trade assurance is a nice choice for you !
Time is precious, so we promise:
1. Quotation time: within 24 hours.
2. Dlievery time: 1-3 workdays for common spare parts.
Any questions, we will reply u within 24 hours.
Our Advantages:
1. Alibaba Gold Supplier.
2. Gold Supplier of air compressor in China.
3. Professional technical team.
4. 15 years specializing in air compressor system.
Payment & package :
L/C, T/T, Paypal, Western union, Trade assurance order and etc.
Inner package :
Blister bag / Bubble bag/ Kraft paper /Acrylic box or as customer’s request.
Outside package :
Carton wooden box and woven bags or as customer’s request.
Transportation and shipping :
DHL, TNT, UPS, EMS, FEDEX and etc.
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Samples: |
US$ 6000/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors utilized in the aerospace industry?
Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:
1. Aircraft Systems:
Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.
2. Ground Support Equipment:
Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.
3. Component Testing:
Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.
4. Airborne Systems:
In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.
5. Environmental Control Systems:
Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.
6. Engine Testing:
In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.
7. Oxygen Systems:
In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.
It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.
.webp)
How do you troubleshoot common air compressor problems?
Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:
1. No Power:
- Check the power source and ensure the compressor is properly plugged in.
- Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
- Verify that the compressor’s power switch or control panel is turned on.
2. Low Air Pressure:
- Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
- Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
- Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.
3. Excessive Noise or Vibration:
- Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
- Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
- Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.
4. Air Leaks:
- Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
- Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
- Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.
5. Excessive Moisture in Compressed Air:
- Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
- Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
- Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.
6. Motor Overheating:
- Ensure the compressor’s cooling system is clean and unobstructed.
- Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
- Verify that the compressor is not being operated in an excessively hot environment.
- Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
- Consider using a thermal overload protector to prevent the motor from overheating.
If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.
.webp)
How does an air compressor work?
An air compressor works by using mechanical energy to compress and pressurize air, which is then stored and used for various applications. Here’s a detailed explanation of how an air compressor operates:
1. Air Intake: The air compressor draws in ambient air through an intake valve or filter. The air may pass through a series of filters to remove contaminants such as dust, dirt, and moisture, ensuring the compressed air is clean and suitable for its intended use.
2. Compression: The intake air enters a compression chamber, typically consisting of one or more pistons or a rotating screw mechanism. As the piston moves or the screw rotates, the volume of the compression chamber decreases, causing the air to be compressed. This compression process increases the pressure and reduces the volume of the air.
3. Pressure Build-Up: The compressed air is discharged into a storage tank or receiver where it is held at a high pressure. The tank allows the compressed air to be stored for later use and helps to maintain a consistent supply of compressed air, even during periods of high demand.
4. Pressure Regulation: Air compressors often have a pressure regulator that controls the output pressure of the compressed air. This allows the user to adjust the pressure according to the requirements of the specific application. The pressure regulator ensures that the compressed air is delivered at the desired pressure level.
5. Release and Use: When compressed air is needed, it is released from the storage tank or receiver through an outlet valve or connection. The compressed air can then be directed to the desired application, such as pneumatic tools, air-operated machinery, or other pneumatic systems.
6. Continued Operation: The air compressor continues to operate as long as there is a demand for compressed air. When the pressure in the storage tank drops below a certain level, the compressor automatically starts again to replenish the compressed air supply.
Additionally, air compressors may include various components such as pressure gauges, safety valves, lubrication systems, and cooling mechanisms to ensure efficient and reliable operation.
In summary, an air compressor works by drawing in air, compressing it to increase its pressure, storing the compressed air, regulating the output pressure, and releasing it for use in various applications. This process allows for the generation of a continuous supply of compressed air for a wide range of industrial, commercial, and personal uses.


editor by CX 2023-12-14
China supplier Silent Portable Oil Free Air Compressor for 5L Medical Oxygenerator mini air compressor
Product Description
Product Parameter
|
ITEM NO |
GLE280A |
|
Name |
Oil free air compressor |
|
Packing |
2 pcs / carton case , 54 pcs / pallet |
|
Weight |
6.0 kg |
|
Dimension |
235*101*163 mm |
|
Installation size |
83*148 mm |
|
Air flow rate (L/min@bar) |
>=75 L/min @2 bar |
|
Technical Specification |
Voltage :220V 50Hz /60Hz ; 110v 60Hz ; Power: <=320 W ; Rated air flow rate: >=75 L/min @2 bar ; Rate working pressure : 2 bar ; Noise : ≤52dB(A) ; Speed: 1440rpm /1700 rpm ; Temperature : -5ºC-40ºC ; Thermal protector : 135ºC ;
Accessories : 1x capacitor , 2xL fittings and 1x safe valve
|
| After-sales Service: | on Line Support and Free Spare Parts |
|---|---|
| Warranty: | Two Years |
| Lubrication Style: | Oil-free |
| Cooling System: | Air Cooling |
| Cylinder Arrangement: | Duplex Arrangement |
| Cylinder Position: | Horizontal |
| Samples: |
US$ 65/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
Can air compressors be used for gas compression and storage?
Yes, air compressors can be used for gas compression and storage. While air compressors are commonly used to compress and store air, they can also be utilized for compressing and storing other gases, depending on the specific application requirements. Here’s how air compressors can be used for gas compression and storage:
Gas Compression:
Air compressors can compress various gases by utilizing the same principles applied to compressing air. The compressor takes in the gas at a certain pressure, and through the compression process, it increases the pressure and reduces the volume of the gas. This compressed gas can then be used for different purposes, such as in industrial processes, gas pipelines, or storage systems.
Gas Storage:
Air compressors can also be used for gas storage by compressing the gas into storage vessels or tanks. The compressed gas is stored at high pressure within these vessels until it is needed for use. Gas storage is commonly employed in industries where a continuous and reliable supply of gas is required, such as in natural gas storage facilities or for storing compressed natural gas (CNG) used as a fuel for vehicles.
Gas Types:
While air compressors are primarily designed for compressing air, they can be adapted to handle various gases, including but not limited to:
- Nitrogen
- Oxygen
- Hydrogen
- Carbon dioxide
- Natural gas
- Refrigerant gases
It’s important to note that when using air compressors for gas compression and storage, certain considerations must be taken into account. These include compatibility of the compressor materials with the specific gas being compressed, ensuring proper sealing to prevent gas leaks, and adhering to safety regulations and guidelines for handling and storing compressed gases.
By leveraging the capabilities of air compressors, it is possible to compress and store gases efficiently, providing a reliable supply for various industrial, commercial, and residential applications.
.webp)
Can air compressors be used for inflating tires and sporting equipment?
Yes, air compressors can be used for inflating tires and sporting equipment, providing a convenient and efficient method for achieving the desired air pressure. Here’s how air compressors are used for these purposes:
1. Tire Inflation:
Air compressors are commonly used for inflating vehicle tires, including car tires, motorcycle tires, bicycle tires, and even larger truck or trailer tires. Air compressors provide a continuous source of pressurized air, allowing for quick and accurate inflation. They are often used in automotive repair shops, gas stations, and by individuals who regularly need to inflate tires.
2. Sporting Equipment Inflation:
Air compressors are also useful for inflating various types of sporting equipment. This includes inflatable balls such as soccer balls, basketballs, footballs, and volleyballs. Additionally, air compressors can be used to inflate inflatable water toys, air mattresses, inflatable kayaks, and other recreational items that require air for proper inflation.
3. Air Tools for Inflation:
Air compressors can power air tools specifically designed for inflation purposes. These tools, known as inflators or air blow guns, provide controlled airflow for inflating tires and sporting equipment. They often have built-in pressure gauges and nozzles designed to fit different types of valves, making them versatile and suitable for various inflation tasks.
4. Adjustable Pressure:
One advantage of using air compressors for inflation is the ability to adjust the pressure. Most air compressors allow users to set the desired pressure level using a pressure regulator or control knob. This feature ensures that tires and sporting equipment are inflated to the recommended pressure, promoting optimal performance and safety.
5. Efficiency and Speed:
Air compressors provide a faster and more efficient inflation method compared to manual pumps. The continuous supply of compressed air allows for quick inflation, reducing the time and effort required to inflate tires and sporting equipment manually.
6. Portable Air Compressors:
For inflating tires and sporting equipment on the go, portable air compressors are available. These compact and lightweight compressors can be easily carried in vehicles or taken to sports events and outdoor activities, ensuring convenient access to a reliable air supply.
It is important to note that when using air compressors for inflating tires, it is recommended to follow manufacturer guidelines and proper inflation techniques to ensure safety and avoid overinflation.
.webp)
Can air compressors be used for automotive applications?
Yes, air compressors can be used for various automotive applications and are commonly found in automotive repair shops, garages, and even in some vehicles. Here are some automotive applications where air compressors are frequently utilized:
1. Tire Inflation: Air compressors are commonly used to inflate tires in automotive applications. They provide a convenient and efficient way to inflate tires to the recommended pressure, ensuring optimal tire performance, fuel efficiency, and safety.
2. Air Tools: Air compressors power a wide range of pneumatic tools used in automotive repair and maintenance. These tools include impact wrenches, ratchet wrenches, air hammers, pneumatic drills, and sanders. Air-powered tools are favored for their high torque and power-to-weight ratio, making them suitable for heavy-duty automotive tasks.
3. Spray Painting: Air compressors are commonly used in automotive painting applications. They power airbrushes and spray guns that are used to apply paint, primer, and clear coats. Air compressors provide the necessary air pressure to atomize the paint and deliver a smooth and even finish.
4. Brake System Maintenance: Air compressors play a crucial role in maintaining and diagnosing automotive brake systems. They are used to pressurize the brake lines, allowing for proper bleeding of the system and detection of leaks or faults.
5. Suspension Systems: Some automotive suspension systems, such as air suspensions, rely on air compressors to maintain the desired air pressure in the suspension components. The compressor inflates or deflates the suspension as needed to provide a comfortable ride and optimal handling.
6. Cleaning and Dusting: Air compressors are used for cleaning automotive parts, blowing away dust and debris, and drying surfaces. They provide a high-pressure stream of air that effectively cleans hard-to-reach areas.
7. Air Conditioning Systems: Air compressors are a key component in automotive air conditioning systems. They compress and circulate refrigerant, allowing the system to cool and dehumidify the air inside the vehicle.
When using air compressors for automotive applications, it’s important to consider the specific requirements of the task at hand. Ensure that the air compressor has the necessary pressure and capacity to meet the demands of the application. Additionally, use appropriate air hoses, fittings, and tools that are compatible with the compressor’s output.
Overall, air compressors are versatile and valuable tools in the automotive industry, providing efficient power sources for a wide range of applications, from tire inflation to powering pneumatic tools and supporting various automotive systems.


editor by CX 2023-12-07
China wholesaler 11 Kw 15 HP Low Noise 100% Oil Free Rotary Scroll Dry Type Air Compressor Price for Medical Dentistry, 3D Printer supplier
Product Description
Product Description
| Type: | Oil Free Scroll Air Compressor |
| Voltage: | 380V/50HZ/3P, 220V/60HZ/3P, 400V/50HZ/3P, 415V/50HZ/3P or Customer′s Requirements |
| Working Pressure: | 8~10bar |
| Installed Motor Power: | 3.0-50 Kw |
| Color: | Blue,white |
| Driven Method: | Belt Driven |
| Transport Package: | Standard Wooden Packing |
| application: | Dentistry,Laboratory,New Energy |
Product Features
1.High quanlity oild free compressed air.
2.High efficiency oil free scroll airend.
3.Low Energy Consumption,Low running,maintenance cost.
4.Aptitude and intelligent Control, integrated touch-screen PLC displayer.
5.Unique safe units make whole compressor more safety, more stable,lest noise,lest energy Loss.
6.Easy to install,operate,maintain.
Product Parameters
| Model | Capacity | Pressure | Motor power | QTY of air end | QTY of motor | Noise Level | Diemensions | Weight | Diameter of air outlet pipe | Inner air tank | Outside air tank | |
| m3/min | Mpa | kW | hp | PCS | PCS | dB(A) | mm | KGS | inch | L | L | |
| D04/08-A1 | 0.3 | 0.8 | 3.0 | 4.0 | 04*1 | 1 | 55±2 | 760*690*820 | 200 | 3/4 | 5 | / |
| D04/08-A4 | 0.4/0.3 | 0.8/1.0 | 3.7 | 5 | 04*1 | 1 | 55±2 | 760*690*820 | 200 | 3/4 | 5 | / |
| D04/08-J3 | 0.4/0.3 | 0.8/1.0 | 3.7 | 5 | 04*1 | 1 | 55±2 | 1400*780*1485 | 450 | 3/4 | / | 200 |
| Q08/08-S1 | 0.8 | 0.8 | 7.5 | 10 | 04*2 | 2 | 60±2 | 1400*700*1200 | 400 | 1 1/2 | 24 | / |
| Q08/08-S1 | 0.8 | 0.8 | 7.5 | 10 | 04*2 | 2 | 60±2 | 1400*780*1485 | 450 | 1 1/2 | / | |
| D06/08-A4 | 0.6/0.4 | 0.8/1.0 | 5.5 | 7 | 0.6*1 | 1 | 55±2 | 760*690*820 | 200 | 3/4 | 5 | / |
| D06/08-J3 | 0.6/0.4 | 0.8/1.0 | 5.5 | 7 | 0.6*1 | 1 | 55±2 | 1400*780*1485 | 450 | 3/4 | / | 200 |
| Z12/08-S1 | 1.2/0.8 | 0.8/1.0 | 11 | 15 | 0.6*2 | 2 | 60±2 | 1400*700*1200 | 350 | 1 1/2 | 24 | / |
| D06/08-J5 | 0.6 | 0.8 | 5.5 | 7 | 0.6*1 | 1 | 60±2 | 1400*780*1485 | 450 | 1 1/2 | / | |
| Z12/08-J5 | 1.2 | 0.8 | 11 | 15 | 0.6*2 | 2 | 60±2 | 1400*780*1485 | 500 | 1 1/2 | / | |
| Z18/08-S1 | 1.8/1.5 | 0.8/1.0 | 16.5 | 22 | 0.6*3 | 3 | 62±2 | 1400*700*1670 | 500 | 1 1/2 | 24 | / |
| Z24/08-S1 | 2.4/2.0 | 0.8/1.0 | 22 | 30 | 0.6*4 | 4 | 65±2 | 1400*1550*1200 | 800 | 1 1/2 | 24*2 | / |
| Z30/08-S1 | 3.0/2.4 | 0.8/1.0 | 27.5 | 37 | 0.6*5 | 5 | 65±2 | 1400*1550*1670 | 1080 | 1 1/2 | / | / |
| Z36/08-S1 | 3.6/3.0 | 0.8/1.0 | 33 | 45 | 0.6*6 | 6 | 65±2 | 1400*1550*1670 | 1200 | 1 1/2 | / | / |
| Z42/08-S1 | 4.2/3.6 | 0.8/1.0 | 38.5 | 52 | 0.6*7 | 7 | 65±2 | 2220*1450*1740 | 1400 | 1 1/2 | / | / |
| Z48/08-S1 | 4.8/4.0 | 0.8/1.0 | 44 | 59 | 0.6*8 | 8 | 65±2 | 2220*1450*1750 | 1520 | 1 1/2 | / | / |
| Z54/08-S1 | 5.4/4.5 | 0.8/1.0 | 49.5 | 67 | 0.6*9 | 9 | 65±2 | 2220*1450*1750 | 1650 | 1 1/2 | / | / |
Company Profile
HangZhou CHINAMFG Mechanical & Electrical Equipment Co., Ltd, established in 2571, is a professional enterprise engaged in the research, development, sale and service of air compressor, screw air compressor, air dryer, filters, oxygen generator, nitrogen generator and wet spray manipulator.
Dedicated to strict quality control and thoughtful customer service, our experienced staff members are always available to discuss your requirements and ensure full customer satisfaction by supplying air and gas. CHINAMFG company not only has its own import and export right and stable distributors worldwide, but also has a team of professional after sales and service. In addition, we have obtained CE, TUV, SGS, ISO certificates.
After long-term development, our company has established 2 wellknown brands: CHINAMFG and TUOWEl.
In domestic market, our CHINAMFG brand of screw air compressors and wet spray manipulators are CHINAMFG in tunnel industry. with cooperation of China Railway Bureau Group Co, Ltd, and also formed a long-term strategic partnership with China Railwaywith (the first) Bureau Group Co, Ltd to China Railway(the tenth) Bureau Group Co., Ltd.
Selling well in all cities and provinces around China, our products are also exported to clients in many countries and regions, such as, Russia, Thailand, Vietnam, Indonesia, South Africa, Tunisia, Saudi Arabia, Uzbekistan, Danmark, Poland, Mexico, Chile, Peru, India, Pakistan, Malaysia, etc.
Our products gain wide praises at home and abroad. We also welcome OEM, ODM orders. As a supplier, CHINAMFG has its own factory, covers an area of 10,000 square meters, with 500 sets output of screw air compressors and 100 sets of oxygen generators per month, with 5 engineers in technical dept, and more than 100 workers.
Whether selecting a current product from our catalog or seeking engineering assistance for your application, you can email or phone us about your sourcing requirements. We warmly welcome customers all over the world to establish cooperation and create a bright future with us together.
FAQ
Q1: What is the rotor speed for the air end?
A1: 2980rmp.
Q2: What’s your lead time?
A2: usually, 5-7 days. (OEM orders: 15days)
Q3: Can you offer water cooled air compressor?
A3: Yes, we can (normally, air cooled type).
Q4: What’s the payment term?
A4: T/T, L/C, Western Union, etc. Also we could accept USD, RMB, and other currency.
Q5: Do you accept customized voltage?
A5: Yes. 380V/50Hz/3ph, 380V/60Hz/3ph, 220V/50Hz/3ph, 220V/60Hz/3ph, 440V/50Hz/3ph, 440V/60Hz/3ph, or as per your requests.
Q6: What is your warranty for air compressor?
A6: One year for the whole air compressor(not including the consumption spare parts) and technical supports can be provided according to your needs.
Q7: Can you accept OEM orders?
A7: Yes, OEM orders are warmly welcome.
Q8: How about your customer service and after-sales service?
A8: 24hrs on-line support, 48hrs problem solved promise.
Q9: Do you have spare parts in stock?
A9: Yes, we do.
Q10: What kind of initial lubrication oil you used in air compressor?
A10: TOTAL 46# mineral oil.
| After-sales Service: | Online Technical Support |
|---|---|
| Warranty: | 1 Year Warranty for The Whole Machine |
| Installation Type: | Stationary Type |
| Lubrication Style: | Oil-free |
| Cylinder Position: | Vertical |
| Product Name: | Oil Free Scroll Air Compressor |
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors used in the food and beverage industry?
Air compressors play a vital role in the food and beverage industry, providing a reliable source of compressed air for various applications. Here are some common uses of air compressors in this industry:
1. Packaging and Filling:
Air compressors are extensively used in packaging and filling operations in the food and beverage industry. Compressed air is utilized to power pneumatic systems that control the movement and operation of packaging machinery, such as filling machines, capping machines, labeling equipment, and sealing devices. The precise and controlled delivery of compressed air ensures accurate and efficient packaging of products.
2. Cleaning and Sanitization:
Air compressors are employed for cleaning and sanitization purposes in food and beverage processing facilities. Compressed air is used to operate air-powered cleaning equipment, such as air blowguns, air-operated vacuum systems, and air knives. It helps remove debris, dust, and contaminants from production lines, equipment, and hard-to-reach areas. Additionally, compressed air is used for drying surfaces after cleaning and for applying sanitizing agents.
3. Cooling and Refrigeration:
In the food and beverage industry, air compressors are utilized in cooling and refrigeration systems. Compressed air is used to drive air compressors in refrigeration units, enabling the circulation of refrigerants and maintaining optimal temperatures for food storage and preservation. The controlled airflow provided by the compressors facilitates efficient cooling and refrigeration processes.
4. Aeration and Mixing:
Air compressors are used for aeration and mixing applications in the food and beverage industry. Compressed air is introduced into processes such as fermentation, dough mixing, and wastewater treatment. It helps in promoting oxygen transfer, enhancing microbial activity, and facilitating proper mixing of ingredients or substances, contributing to the desired quality and consistency of food and beverage products.
5. Pneumatic Conveying:
In food processing plants, air compressors are employed for pneumatic conveying systems. Compressed air is used to transport bulk materials such as grains, powders, and ingredients through pipes or tubes. It enables the gentle and efficient movement of materials without the need for mechanical conveyors, reducing the risk of product damage or contamination.
6. Quality Control and Testing:
Air compressors are utilized in quality control and testing processes within the food and beverage industry. Compressed air is used for leak testing of packaging materials, containers, and seals to ensure product integrity. It is also employed for spraying air or gases during sensory analysis and flavor testing.
7. Air Agitation:
In certain food and beverage production processes, air compressors are used for air agitation. Compressed air is introduced into tanks, mixing vessels, or fermentation tanks to create turbulence and promote mixing or chemical reactions. It aids in achieving consistent product quality and uniform distribution of ingredients or additives.
It is important to note that air compressors used in the food and beverage industry must meet strict hygiene and safety standards. They may require specific filtration systems, oil-free operation, and compliance with food safety regulations to prevent contamination or product spoilage.
By utilizing air compressors effectively, the food and beverage industry can benefit from improved productivity, enhanced product quality, and efficient processing operations.
.webp)
How do you choose the right air compressor for woodworking?
Choosing the right air compressor for woodworking is essential to ensure efficient and effective operation of pneumatic tools and equipment. Here are some factors to consider when selecting an air compressor for woodworking:
1. Required Air Volume (CFM):
Determine the required air volume or cubic feet per minute (CFM) for your woodworking tools and equipment. Different tools have varying CFM requirements, so it is crucial to choose an air compressor that can deliver the required CFM to power your tools effectively. Make sure to consider the highest CFM requirement among the tools you’ll be using simultaneously.
2. Tank Size:
Consider the tank size of the air compressor. A larger tank allows for more stored air, which can be beneficial when using tools that require short bursts of high air volume. It helps maintain a consistent air supply and reduces the frequency of the compressor cycling on and off. However, if you have tools with continuous high CFM demands, a larger tank may not be as critical.
3. Maximum Pressure (PSI):
Check the maximum pressure (PSI) rating of the air compressor. Woodworking tools typically operate within a specific PSI range, so ensure that the compressor can provide the required pressure. It is advisable to choose an air compressor with a higher maximum PSI rating to accommodate any future tool upgrades or changes in your woodworking needs.
4. Noise Level:
Consider the noise level of the air compressor, especially if you’ll be using it in a residential or shared workspace. Some air compressors have noise-reducing features or are designed to operate quietly, making them more suitable for woodworking environments where noise control is important.
5. Portability:
Assess the portability requirements of your woodworking projects. If you need to move the air compressor frequently or work in different locations, a portable and lightweight compressor may be preferable. However, if the compressor will remain stationary in a workshop, a larger, stationary model might be more suitable.
6. Power Source:
Determine the power source available in your woodworking workspace. Air compressors can be powered by electricity or gasoline engines. If electricity is readily available, an electric compressor may be more convenient and cost-effective. Gasoline-powered compressors offer greater flexibility for remote or outdoor woodworking projects where electricity may not be accessible.
7. Quality and Reliability:
Choose an air compressor from a reputable manufacturer known for producing reliable and high-quality equipment. Read customer reviews and consider the warranty and after-sales support offered by the manufacturer to ensure long-term satisfaction and reliability.
8. Budget:
Consider your budget and balance it with the features and specifications required for your woodworking needs. While it’s important to invest in a reliable and suitable air compressor, there are options available at various price points to accommodate different budgets.
By considering these factors and evaluating your specific woodworking requirements, you can choose an air compressor that meets the demands of your tools, provides efficient performance, and enhances your woodworking experience.
.webp)
How does an air compressor work?
An air compressor works by using mechanical energy to compress and pressurize air, which is then stored and used for various applications. Here’s a detailed explanation of how an air compressor operates:
1. Air Intake: The air compressor draws in ambient air through an intake valve or filter. The air may pass through a series of filters to remove contaminants such as dust, dirt, and moisture, ensuring the compressed air is clean and suitable for its intended use.
2. Compression: The intake air enters a compression chamber, typically consisting of one or more pistons or a rotating screw mechanism. As the piston moves or the screw rotates, the volume of the compression chamber decreases, causing the air to be compressed. This compression process increases the pressure and reduces the volume of the air.
3. Pressure Build-Up: The compressed air is discharged into a storage tank or receiver where it is held at a high pressure. The tank allows the compressed air to be stored for later use and helps to maintain a consistent supply of compressed air, even during periods of high demand.
4. Pressure Regulation: Air compressors often have a pressure regulator that controls the output pressure of the compressed air. This allows the user to adjust the pressure according to the requirements of the specific application. The pressure regulator ensures that the compressed air is delivered at the desired pressure level.
5. Release and Use: When compressed air is needed, it is released from the storage tank or receiver through an outlet valve or connection. The compressed air can then be directed to the desired application, such as pneumatic tools, air-operated machinery, or other pneumatic systems.
6. Continued Operation: The air compressor continues to operate as long as there is a demand for compressed air. When the pressure in the storage tank drops below a certain level, the compressor automatically starts again to replenish the compressed air supply.
Additionally, air compressors may include various components such as pressure gauges, safety valves, lubrication systems, and cooling mechanisms to ensure efficient and reliable operation.
In summary, an air compressor works by drawing in air, compressing it to increase its pressure, storing the compressed air, regulating the output pressure, and releasing it for use in various applications. This process allows for the generation of a continuous supply of compressed air for a wide range of industrial, commercial, and personal uses.


editor by CX 2023-12-06
China supplier Gle550A-1 Air Compressor portable air compressor
Product Description
Product Parameter
|
ITEM NO |
GLE550A-1 |
|
Name |
Air compressor |
|
Packing |
2 Layers Carton Box + Wooden Pallet |
|
Weight |
10.4 kg |
|
Dimension |
240*113*200 mm |
|
Installation size |
89*203 mm (4*M6) |
|
Technical Specification |
Voltage : 220V 50Hz |
| After-sales Service: | on Line Support and Free Spare Parts |
|---|---|
| Warranty: | Two Years |
| Lubrication Style: | Oil-free |
| Cooling System: | Air Cooling |
| Cylinder Arrangement: | Duplex Arrangement |
| Cylinder Position: | Two Air Compressor |
| Samples: |
US$ 85/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
Can air compressors be used for cleaning and blowing dust?
Yes, air compressors can be effectively used for cleaning and blowing dust in various applications. Here’s how air compressors are utilized for these purposes:
1. Cleaning Machinery and Equipment:
Air compressors are commonly used for cleaning machinery and equipment in industries such as manufacturing, automotive, and construction. Compressed air is directed through a nozzle or blowgun attachment to blow away dust, debris, and other contaminants from surfaces, crevices, and hard-to-reach areas. The high-pressure air effectively dislodges and removes accumulated dust, helping to maintain equipment performance and cleanliness.
2. Dusting Surfaces:
Air compressors are also employed for dusting surfaces in various settings, including homes, offices, and workshops. The compressed air can be used to blow dust off furniture, shelves, electronic equipment, and other objects. It provides a quick and efficient method of dusting, especially for intricate or delicate items where traditional dusting methods may be challenging.
3. Cleaning HVAC Systems:
Air compressors are utilized for cleaning HVAC (Heating, Ventilation, and Air Conditioning) systems. The compressed air can be used to blow dust, dirt, and debris from air ducts, vents, and cooling coils. This helps improve the efficiency and air quality of HVAC systems, preventing the buildup of contaminants that can affect indoor air quality.
4. Blowing Dust in Workshops:
In workshops and garages, air compressors are often used to blow dust and debris from workbenches, power tools, and work areas. Compressed air is directed to blow away loose particles and maintain a clean and safe work environment. This is particularly useful in woodworking, metalworking, and other trades where dust and debris can accumulate during the manufacturing or fabrication processes.
5. Cleaning Electronics and Computer Equipment:
Air compressors are employed for cleaning electronics and computer equipment. The compressed air is used to blow dust and debris from keyboards, computer cases, circuit boards, and other electronic components. It helps in preventing overheating and maintaining the proper functioning of sensitive electronic devices.
6. Industrial Cleaning Applications:
Air compressors find extensive use in industrial cleaning applications. They are employed in industrial settings, such as factories and warehouses, for cleaning large surfaces, production lines, and equipment. Compressed air is directed through specialized cleaning attachments or air-operated cleaning systems to remove dust, dirt, and contaminants efficiently.
When using air compressors for cleaning and blowing dust, it is important to follow safety precautions and guidelines. The high-pressure air can cause injury if directed towards the body or sensitive equipment. It is advisable to wear appropriate personal protective equipment, such as safety glasses and gloves, and ensure that the air pressure is regulated to prevent excessive force.
Overall, air compressors provide a versatile and effective solution for cleaning and blowing dust in various applications, offering a convenient alternative to traditional cleaning methods.
.webp)
How do you choose the right air compressor for woodworking?
Choosing the right air compressor for woodworking is essential to ensure efficient and effective operation of pneumatic tools and equipment. Here are some factors to consider when selecting an air compressor for woodworking:
1. Required Air Volume (CFM):
Determine the required air volume or cubic feet per minute (CFM) for your woodworking tools and equipment. Different tools have varying CFM requirements, so it is crucial to choose an air compressor that can deliver the required CFM to power your tools effectively. Make sure to consider the highest CFM requirement among the tools you’ll be using simultaneously.
2. Tank Size:
Consider the tank size of the air compressor. A larger tank allows for more stored air, which can be beneficial when using tools that require short bursts of high air volume. It helps maintain a consistent air supply and reduces the frequency of the compressor cycling on and off. However, if you have tools with continuous high CFM demands, a larger tank may not be as critical.
3. Maximum Pressure (PSI):
Check the maximum pressure (PSI) rating of the air compressor. Woodworking tools typically operate within a specific PSI range, so ensure that the compressor can provide the required pressure. It is advisable to choose an air compressor with a higher maximum PSI rating to accommodate any future tool upgrades or changes in your woodworking needs.
4. Noise Level:
Consider the noise level of the air compressor, especially if you’ll be using it in a residential or shared workspace. Some air compressors have noise-reducing features or are designed to operate quietly, making them more suitable for woodworking environments where noise control is important.
5. Portability:
Assess the portability requirements of your woodworking projects. If you need to move the air compressor frequently or work in different locations, a portable and lightweight compressor may be preferable. However, if the compressor will remain stationary in a workshop, a larger, stationary model might be more suitable.
6. Power Source:
Determine the power source available in your woodworking workspace. Air compressors can be powered by electricity or gasoline engines. If electricity is readily available, an electric compressor may be more convenient and cost-effective. Gasoline-powered compressors offer greater flexibility for remote or outdoor woodworking projects where electricity may not be accessible.
7. Quality and Reliability:
Choose an air compressor from a reputable manufacturer known for producing reliable and high-quality equipment. Read customer reviews and consider the warranty and after-sales support offered by the manufacturer to ensure long-term satisfaction and reliability.
8. Budget:
Consider your budget and balance it with the features and specifications required for your woodworking needs. While it’s important to invest in a reliable and suitable air compressor, there are options available at various price points to accommodate different budgets.
By considering these factors and evaluating your specific woodworking requirements, you can choose an air compressor that meets the demands of your tools, provides efficient performance, and enhances your woodworking experience.
.webp)
What are the key components of an air compressor system?
An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:
1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.
2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.
3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.
4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.
6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.
7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.
8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.
9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.
10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.
These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.


editor by CX 2023-12-02
China supplier 200 Bar Air Cooling High Pressure Medical Oxygen Booster Compressor lowes air compressor
Product Description
Product Overview
An oxygen compressor is a compressor that is used to pressurize oxygen and deliver or store it.There are 2 uses for medical oxygen compressors. One is that the hospital’s PSA oxygen generator needs to be pressurized to supply various wards and operating rooms, providing 7-10 kg of line pressure.and the other is that PSA oxygen needs to be stored. The high-pressure container is convenient for mobile use,and the storage pressure is generally 100 barg, 150 barg,200 barg,or higher 300 barg pressure.
Product Features
1. Completely 100% oil free, no oil required (depending on the specific model);
2. Oxygen for medical PSA oxygen gas source;
3. NO pollution, keep the same purity into the gas;
4. RELIABLE and high quality;
5. Low maintenance cost, simple operation;
6. 4000 hours piston ring working life under low pressure conditions, 1500-2000 hours working life under high pressure conditions;
7.CE approved to meet the requirements of the EU market;
8. According to the customer’s specific working conditions. the compressor is designed for single machine compression,two-stage compression, three-stage compression and four-stage compression;
9. Low speed, long life,average speed 260-350RPM;
10. Low noise, average noise below 75dB, can work quietly in the medical field;
11. continuous continuous heavy-duty operation. can run stably for 24 hours without stopping;
12. Each stage has an interstage safety valve. lf the stage is overpressured, the safety valve will take off and release the overpressure gas to ensure the stable operation of the compressor;
13. Each level has a temperature controller. lf the temperature between the stages exceeds the standard. the temperature display will sound and light alarm;
Detailed Photos
Product Parameters
| Model | Working Medium |
Suction pressure (Mpa,Psig) |
Discharge Pressure | Motor (KW) |
Flow rate (Nm3/hr) | Voltage | Cooling way | Weight (kgs) | Dimension (mm) |
| GOW-15/4-150 | oxygen | 0.3-0.4,40-60 | 15,2150 | 11 | 15 | 220V/380V/415V/440V 50/60HZ |
Air cooling | 780 | 1500*950*1500 |
| GOW-16/4-150 | oxygen | 0.3-0.4,40-60 | 15,2150 | 11 | 16 | 220V/380V/415V/440V 50/60HZ |
Air cooling | 780 | 1500*950*1500 |
| GOW-20/4-150 | oxygen | 0.3-0.4,40-60 | 15,2150 | 11 | 20 | 220V/380V/415V/440V 50/60HZ |
Air cooling | 780 | 1500*950*1500 |
| GOW-25/4-150 | oxygen | 0.3-0.4,40-60 | 15,2150 | 11 | 25 | 220V/380V/415V/440V 50/60HZ |
Air cooling | 960 | 1500*950*1500 |
| GOW-30/4-150 | oxygen | 0.3-0.4,40-60 | 15,2150 | 11 | 30 | 220V/380V/415V/440V 50/60HZ |
Air cooling | 960 | 1500*950*1500 |
| GOW-35/4-150 | oxygen | 0.3-0.4,40-60 | 15,2150 | 11 | 35 | 220V/380V/415V/440V 50/60HZ |
Air cooling | 960 | 1500*950*1500 |
| GOW-40/4-150 | oxygen | 0.3-0.4,40-60 | 15,2150 | 15 | 40 | 220V/380V/415V/440V 50/60HZ |
Air cooling | 1000 | 1500*950*1500 |
| GOW-50/4-150 | oxygen | 0.3-0.4,40-60 | 15,2150 | 15 | 50 | 220V/380V/415V/440V 50/60HZ |
Air cooling | 1000 | 1500*950*1500 |
| GOW-60/4-150 | oxygen | 0.3-0.4,40-60 | 15,2150 | 18.5 | 60 | 220V/380V/415V/440V 50/60HZ |
Air cooling | 1050 | 1500*950*1500 |
Company Profile
ZheJiang CHINAMFG Medical Technology Co., Ltd. is located in HangZhou Economic Technological Development Zone (ZheJiang , China). Our company is professionally engaged in researching, developing and manufacturing medical oxygen generating equipment. As a high-tech enterprise, we can provide customers with medical PSA Oxygen Generator, integrated PSA Oxygen Generating System, PSA Oxygen Generating System, Hyperbaric Oxygen Chamber and Nitrogen Reuse System, etc. We can provide a variety of gas supply solutions according to customer requirements, and provide users with repair and maintenance, technical training and technical supports in respect of nitrogen, oxygen generating equipment and related equipment.
Our Certificates
Exhibition
Payment & Delivery
FAQ
Q1. Are you a manufacturer or trading company?
We are a professional manufacturer of Integrated oxygen generator systems with our own factory, research Lab, showroom, sales center.
Q2. What certificates do you have?
As a company, we have ISO9001 and ISO 13485. For products, we have CE certificates.
Q3. What payment terms do you accept?
We accept T/T, L/C, etc.
Q4.Do you offer customized services?
Yes, We offer customized products according to different oxygen demands.
Q5.How about your after-sale services?
We provide a variety of gas supply solutions according to customer requirements, and also provide users with repair and maintenance, technical training and technical advice in respect of nitrogen, oxygen generating equipment, and related equipment.
| After-sales Service: | Online |
|---|---|
| Warranty: | 1 Year |
| Principle: | Centrifugal Compressor |
| Application: | Back Pressure Type, Intermediate Back Pressure Type, High Back Pressure Type |
| Performance: | Low Noise, Variable Frequency |
| Mute: | Not Mute |
| Customization: |
Available
|
|
|---|
.webp)
What is the role of air compressors in power generation?
Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:
1. Combustion Air Supply:
Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.
2. Instrumentation and Control:
Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.
3. Cooling and Ventilation:
In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.
4. Cleaning and Maintenance:
Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.
5. Pneumatic Tools and Equipment:
In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.
6. Nitrogen Generation:
Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.
7. Start-up and Emergency Systems:
Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.
Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.
.webp)
How do you maintain proper air quality in compressed air systems?
Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:
1. Air Filtration:
Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.
2. Moisture Control:
Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.
3. Oil Removal:
If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.
4. Regular Maintenance:
Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.
5. Air Receiver Tank Maintenance:
Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.
6. Air Quality Testing:
Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.
7. Education and Training:
Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.
8. Documentation and Record-Keeping:
Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.
By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.
.webp)
How do you choose the right size of air compressor for your needs?
Choosing the right size of air compressor is essential to ensure optimal performance and efficiency for your specific needs. Here are some factors to consider when selecting the appropriate size:
1. Air Demand: Determine the air demand requirements of your applications. Calculate the total CFM (Cubic Feet per Minute) needed by considering the air consumption of all the pneumatic tools and equipment that will be operated simultaneously. Choose an air compressor with a CFM rating that meets or exceeds this total demand.
2. Pressure Requirements: Consider the required operating pressure for your applications. Check the PSI (Pounds per Square Inch) rating of the tools and equipment you will be using. Ensure that the air compressor you choose can deliver the necessary pressure consistently.
3. Duty Cycle: Evaluate the duty cycle of the air compressor. The duty cycle represents the percentage of time the compressor can operate within a given time period without overheating or experiencing performance issues. If you require continuous or heavy-duty operation, choose a compressor with a higher duty cycle.
4. Power Source: Determine the available power source at your location. Air compressors can be powered by electricity or gasoline engines. Ensure that the chosen compressor matches the available power supply and consider factors such as voltage, phase, and fuel requirements.
5. Portability: Assess the portability requirements of your applications. If you need to move the air compressor frequently or use it in different locations, consider a portable or wheeled compressor that is easy to transport.
6. Space and Noise Constraints: Consider the available space for installation and the noise restrictions in your working environment. Choose an air compressor that fits within the allocated space and meets any noise regulations or requirements.
7. Future Expansion: Anticipate any potential future expansions or increases in air demand. If you expect your air demand to grow over time, it may be wise to choose a slightly larger compressor to accommodate future needs and avoid the need for premature replacement.
8. Budget: Consider your budgetary constraints. Compare the prices of different air compressor models while ensuring that the chosen compressor meets your specific requirements. Keep in mind that investing in a higher-quality compressor may result in better performance, durability, and long-term cost savings.
By considering these factors and evaluating your specific needs, you can choose the right size of air compressor that will meet your air demand, pressure requirements, and operational preferences, ultimately ensuring efficient and reliable performance.


editor by CX 2023-12-02