China Professional Famous Brand High Pressure Screw Air Compressor air compressor oil

Product Description

Features
1. No seal design, the host never leak
Our unique patented technology, the host does not have mechanical seals nor a rubber seal, the complete elimination of leakage sealing produced a host so that the host never leak.
2. The power consumption province, the same power than conventional gas production more than 15% larger compresso
Our air compressor can provide you with saving more than 15 percent, to CMN37G air compressor 24 hours a day, 350 days per year according to the calculation, electricity savings for your company to 46,620 degrees, one degree by one dollar per year for you save electricity 46,620 yuan.
3. Low oil content, very little oil content of compressed air
Our outstanding technical superiority, the volumetric efficiency of up to 95% lower fuel injection quantity can be used to achieve the sealing effect, coupled with the unique design of the gas separation barrel, oil core processing burden is very light, very small amount of oil the air,
sub-core long-life oil.
The high-temperature, continuous operation
Since the volumetric efficiency of our company hosts up to 95%, meaning that only 5% of the gas leak, so the loss is small, that is, the amount of heat the unit rarely run under ambient temperature around 80 ºC.
5. Simple design structure
Secondary host a series of simple structure, less power loss and high efficiency. The whole volume occupied by small, easy to install, simple maintenance.
6. Our company master the core technology
Exhaust pressure from 0.4MPa — 4.0MPa, displacement from: 1 cubic — 42 cubic meters. High pressure air compressor screw air compressor known as the Pearl of the field, our company is the only one capable of producing more pressure 4.0MPa pressure screw air compressor manufacturer, is currently successfully developed two-stage compression screw compressor pressure up to 100 kg, filling gaps in worldwide high-pressure single-screw compressor.

 HIgh pressure 2 stage screw air compressor technical data

Modle

Maximum work pressure FAD Air supply temperature Power Noise Oil content
(supply air)
Weight Cooling fan power Compressed Air Outlet Diameter Dimension
L×W×H
Mpa m3/min ºC kW HP dB(A) PPM Kg kW   mm
TP15G 3.0 1.45 ≤+25ºC
≤ambient temperature +25ºC
15 20 63 ≤2 848 0.635 3/4″ 1600×1150×1315
4.0 1.12
TP18G 3.0 1.73 18.5 25 65 868
4.0 1.38
TP22G 3.0 2.35 22 30 65 900
4.0 1.65
TP30G 3.0 2.93 30 40 66 1217 2.0 3/4″ 1900×1420×1460
4.0 2.28
TP37G 3.0 3.65 37 50 67 1232
4.0 2.83
TP45G 3.0 4.7 45 60 68 1286
4.0 3.57
TP55G 3.0 6.0 55 75 70 2000 1″ 2050×1460×1500
4.0 4.5
TP75G 3.0 7.9 75 100 73 3820 4.3 1″ 2250×1600×1800
4.0 6.5
TP90G 3.0 10.0 90 125 73 3900
4.0 7.84
TP110G 3.0 12.2 110 150 78 3920
4.0 9.7
TP132G 3.0 14.2 132 175 78 4080 7.0 1 1/2″ 2400×1700×1550
4.0 11.68
TP160G 3.0 17.3 160 215 78 6450 2660×1800×1800
4.0 14.2
CM185G 3.0 19.6 185 250 78 6520
4.0 16.6
TP200G 3.0 22.8 200 270 78 6560
4.0 17.9
TP250G 3.0 28.2 250 340 78 7200 11.0 2″ 2900×1800×2000
4.0 22.8
 

/* October 22, 2571 15:47:17 */(()=>{function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

air compressor

Can air compressors be used for gas compression and storage?

Yes, air compressors can be used for gas compression and storage. While air compressors are commonly used to compress and store air, they can also be utilized for compressing and storing other gases, depending on the specific application requirements. Here’s how air compressors can be used for gas compression and storage:

Gas Compression:

Air compressors can compress various gases by utilizing the same principles applied to compressing air. The compressor takes in the gas at a certain pressure, and through the compression process, it increases the pressure and reduces the volume of the gas. This compressed gas can then be used for different purposes, such as in industrial processes, gas pipelines, or storage systems.

Gas Storage:

Air compressors can also be used for gas storage by compressing the gas into storage vessels or tanks. The compressed gas is stored at high pressure within these vessels until it is needed for use. Gas storage is commonly employed in industries where a continuous and reliable supply of gas is required, such as in natural gas storage facilities or for storing compressed natural gas (CNG) used as a fuel for vehicles.

Gas Types:

While air compressors are primarily designed for compressing air, they can be adapted to handle various gases, including but not limited to:

  • Nitrogen
  • Oxygen
  • Hydrogen
  • Carbon dioxide
  • Natural gas
  • Refrigerant gases

It’s important to note that when using air compressors for gas compression and storage, certain considerations must be taken into account. These include compatibility of the compressor materials with the specific gas being compressed, ensuring proper sealing to prevent gas leaks, and adhering to safety regulations and guidelines for handling and storing compressed gases.

By leveraging the capabilities of air compressors, it is possible to compress and store gases efficiently, providing a reliable supply for various industrial, commercial, and residential applications.

air compressor

Are there differences between single-stage and two-stage air compressors?

Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:

Compression Stages:

The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.

Compression Process:

In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.

Pressure Output:

The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.

Efficiency:

Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.

Intercooling:

Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.

Applications:

The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.

It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.

In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.

air compressor

What is the role of air compressor tanks?

Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:

1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.

2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.

3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.

4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.

5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.

6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.

Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.

air compressorsair compressors
editor by lmc 2025-02-24